These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 23494938)

  • 1. Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries.
    Mahmood N; Zhang C; Hou Y
    Small; 2013 Apr; 9(8):1321-8. PubMed ID: 23494938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable synthesis of monodisperse ultrathin SnO₂ nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties.
    Xu C; Sun J; Gao L
    Nanoscale; 2012 Sep; 4(17):5425-30. PubMed ID: 22832436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries.
    Xing Z; Ju Z; Zhao Y; Wan J; Zhu Y; Qiang Y; Qian Y
    Sci Rep; 2016 May; 6():26146. PubMed ID: 27184859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries.
    Chang K; Chen W
    Chem Commun (Camb); 2011 Apr; 47(14):4252-4. PubMed ID: 21380470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile hydrothermal synthesis of CuFeO2 hexagonal platelets/rings and graphene composites as anode materials for lithium ion batteries.
    Dong Y; Cao C; Chui YS; Zapien JA
    Chem Commun (Camb); 2014 Sep; 50(70):10151-4. PubMed ID: 25052565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sandwich-structured graphene-nickel silicate-nickel ternary composites as superior anode materials for lithium-ion batteries.
    Jin R; Yang Y; Li Y; Liu X; Xing Y; Song S; Shi Z
    Chemistry; 2015 Jun; 21(25):9014-7. PubMed ID: 25959147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries.
    Li B; Cao H; Shao J; Li G; Qu M; Yin G
    Inorg Chem; 2011 Mar; 50(5):1628-32. PubMed ID: 21244033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction.
    Mahmood N; Zhang C; Jiang J; Liu F; Hou Y
    Chemistry; 2013 Apr; 19(16):5183-90. PubMed ID: 23447515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries.
    Xie X; Su D; Zhang J; Chen S; Mondal AK; Wang G
    Nanoscale; 2015 Feb; 7(7):3164-72. PubMed ID: 25613638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.
    Zhu X; Zhu Y; Murali S; Stoller MD; Ruoff RS
    ACS Nano; 2011 Apr; 5(4):3333-8. PubMed ID: 21443243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries.
    Choi J; Jin J; Jung IG; Kim JM; Kim HJ; Son SU
    Chem Commun (Camb); 2011 May; 47(18):5241-3. PubMed ID: 21445446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The origin of the enhanced performance of nitrogen-doped MoS2 in lithium ion batteries.
    Liu Q; Weijun X; Wu Z; Huo J; Liu D; Wang Q; Wang S
    Nanotechnology; 2016 Apr; 27(17):175402. PubMed ID: 26965193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries.
    Wang HG; Wu Z; Meng FL; Ma DL; Huang XL; Wang LM; Zhang XB
    ChemSusChem; 2013 Jan; 6(1):56-60. PubMed ID: 23225752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries.
    Yan Y; Yin YX; Xin S; Guo YG; Wan LJ
    Chem Commun (Camb); 2012 Nov; 48(86):10663-5. PubMed ID: 23011577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layer structured α-Fe₂O₃ nanodisk/reduced graphene oxide composites as high-performance anode materials for lithium-ion batteries.
    Qu J; Yin YX; Wang YQ; Yan Y; Guo YG; Song WG
    ACS Appl Mater Interfaces; 2013 May; 5(9):3932-6. PubMed ID: 23594186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries.
    Chang K; Chen W
    ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance.
    Su D; Kim HS; Kim WS; Wang G
    Chemistry; 2012 Jun; 18(26):8224-9. PubMed ID: 22589171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.