These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 23495071)
41. A novel label-free and reusable electrochemical cytosensor for highly sensitive detection and specific collection of CTCs. Shen H; Yang J; Chen Z; Chen X; Wang L; Hu J; Ji F; Xie G; Feng W Biosens Bioelectron; 2016 Jul; 81():495-502. PubMed ID: 27016910 [TBL] [Abstract][Full Text] [Related]
42. Natural Biointerface Based on Cancer Cell Membranes for Specific Capture and Release of Circulating Tumor Cells. Ding P; Wang Z; Wu Z; Zhou Y; Sun N; Pei R ACS Appl Mater Interfaces; 2020 May; 12(18):20263-20270. PubMed ID: 32259427 [TBL] [Abstract][Full Text] [Related]
43. Aptamer-Functionalized and Gold Nanoparticle Array-Decorated Magnetic Graphene Nanosheets Enable Multiplexed and Sensitive Electrochemical Detection of Rare Circulating Tumor Cells in Whole Blood. Dou B; Xu L; Jiang B; Yuan R; Xiang Y Anal Chem; 2019 Aug; 91(16):10792-10799. PubMed ID: 31310099 [TBL] [Abstract][Full Text] [Related]
44. Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Sheng W; Chen T; Kamath R; Xiong X; Tan W; Fan ZH Anal Chem; 2012 May; 84(9):4199-206. PubMed ID: 22482734 [TBL] [Abstract][Full Text] [Related]
45. TiO Li W; Li R; Huang B; Wang Z; Sun Y; Wei X; Heng C; Liu W; Yu M; Guo SS; Zhao XZ Nanotechnology; 2019 Aug; 30(33):335101. PubMed ID: 30965310 [TBL] [Abstract][Full Text] [Related]
46. Regenerative NanoOctopus Based on Multivalent-Aptamer-Functionalized Magnetic Microparticles for Effective Cell Capture in Whole Blood. Chen Y; Tyagi D; Lyu M; Carrier AJ; Nganou C; Youden B; Wang W; Cui S; Servos M; Oakes K; He S; Zhang X Anal Chem; 2019 Mar; 91(6):4017-4022. PubMed ID: 30649851 [TBL] [Abstract][Full Text] [Related]
47. Surface engineering of macrophages with nucleic acid aptamers for the capture of circulating tumor cells. Sugimoto S; Moriyama R; Mori T; Iwasaki Y Chem Commun (Camb); 2015 Dec; 51(98):17428-30. PubMed ID: 26468496 [TBL] [Abstract][Full Text] [Related]
48. Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. Sheng W; Chen T; Tan W; Fan ZH ACS Nano; 2013 Aug; 7(8):7067-76. PubMed ID: 23837646 [TBL] [Abstract][Full Text] [Related]
49. Aptamer and Antisense-Mediated Two-Dimensional Isolation of Specific Cancer Cell Subpopulations. Labib M; Green B; Mohamadi RM; Mepham A; Ahmed SU; Mahmoudian L; Chang IH; Sargent EH; Kelley SO J Am Chem Soc; 2016 Mar; 138(8):2476-9. PubMed ID: 26860321 [TBL] [Abstract][Full Text] [Related]
51. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Phillips JA; Xu Y; Xia Z; Fan ZH; Tan W Anal Chem; 2009 Feb; 81(3):1033-9. PubMed ID: 19115856 [TBL] [Abstract][Full Text] [Related]
52. Biomimetic recognition strategy for efficient capture and release of circulating tumor cells. Zheng J; Li D; Jiao J; Duan C; Gong Y; Shi H; Wang Z; Xiang Y Mikrochim Acta; 2021 Jun; 188(6):220. PubMed ID: 34076759 [TBL] [Abstract][Full Text] [Related]
53. Aptamer-modified micro/nanostructured surfaces: efficient capture of Ramos cells in serum environment. Wang Y; Zhou F; Liu X; Yuan L; Li D; Wang Y; Chen H ACS Appl Mater Interfaces; 2013 May; 5(9):3816-23. PubMed ID: 23540602 [TBL] [Abstract][Full Text] [Related]
54. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Safarpour H; Dehghani S; Nosrati R; Zebardast N; Alibolandi M; Mokhtarzadeh A; Ramezani M Biosens Bioelectron; 2020 Jan; 148():111833. PubMed ID: 31733465 [TBL] [Abstract][Full Text] [Related]
55. Direct Plasmon-Enhanced Electrochemistry for Enabling Ultrasensitive and Label-Free Detection of Circulating Tumor Cells in Blood. Wang SS; Zhao XP; Liu FF; Younis MR; Xia XH; Wang C Anal Chem; 2019 Apr; 91(7):4413-4420. PubMed ID: 30816698 [TBL] [Abstract][Full Text] [Related]
56. Aptamer-based photoelectrochemical assay for the determination of MCF-7. Luo J; Liang D; Li X; Deng L; Wang Z; Yang M Mikrochim Acta; 2020 Apr; 187(5):257. PubMed ID: 32246287 [TBL] [Abstract][Full Text] [Related]
57. DNA Framework-Programmed Cell Capture via Topology-Engineered Receptor-Ligand Interactions. Li M; Ding H; Lin M; Yin F; Song L; Mao X; Li F; Ge Z; Wang L; Zuo X; Ma Y; Fan C J Am Chem Soc; 2019 Nov; 141(47):18910-18915. PubMed ID: 31691568 [TBL] [Abstract][Full Text] [Related]
58. Ultrasensitive Capture, Detection, and Release of Circulating Tumor Cells Using a Nanochannel-Ion Channel Hybrid Coupled with Electrochemical Detection Technique. Cao J; Zhao XP; Younis MR; Li ZQ; Xia XH; Wang C Anal Chem; 2017 Oct; 89(20):10957-10964. PubMed ID: 28929739 [TBL] [Abstract][Full Text] [Related]
59. Fabrication of a Polyvalent Aptamer Network on an Electrode Surface for Capture and Analysis of Circulating Tumor Cells. Lu B; Deng Y; Peng Y; Huang Y; Ma J; Li G Anal Chem; 2022 Sep; 94(37):12822-12827. PubMed ID: 36067364 [TBL] [Abstract][Full Text] [Related]
60. Near-Infrared Light-Switched MoS Wang X; Wang X; Cheng S; Ye M; Zhang C; Xian Y Anal Chem; 2020 Feb; 92(4):3111-3117. PubMed ID: 31968939 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]