These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 23495087)
21. Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. Ma X; Ning G; Qi C; Xu C; Gao J ACS Appl Mater Interfaces; 2014 Aug; 6(16):14415-22. PubMed ID: 25105538 [TBL] [Abstract][Full Text] [Related]
22. A Fe/Fe3O4/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries. Li Y; Meng Q; Zhu SM; Sun ZH; Yang H; Chen ZX; Zhu CL; Guo ZP; Zhang D Dalton Trans; 2015 Mar; 44(10):4594-600. PubMed ID: 25655996 [TBL] [Abstract][Full Text] [Related]
23. Layer-by-layer assembled MoO₂-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries. Xia F; Hu X; Sun Y; Luo W; Huang Y Nanoscale; 2012 Aug; 4(15):4707-11. PubMed ID: 22744734 [TBL] [Abstract][Full Text] [Related]
24. A ZnO-graphene hybrid with remarkably enhanced lithium storage capability. Li S; Xiao Y; Wang X; Cao M Phys Chem Chem Phys; 2014 Dec; 16(47):25846-53. PubMed ID: 25353394 [TBL] [Abstract][Full Text] [Related]
25. Self-assembled Fe₂O₃/graphene aerogel with high lithium storage performance. Xiao L; Wu D; Han S; Huang Y; Li S; He M; Zhang F; Feng X ACS Appl Mater Interfaces; 2013 May; 5(9):3764-9. PubMed ID: 23551107 [TBL] [Abstract][Full Text] [Related]
26. Fabrication of LiF/Fe/Graphene nanocomposites as cathode material for lithium-ion batteries. Ma R; Dong Y; Xi L; Yang S; Lu Z; Chung C ACS Appl Mater Interfaces; 2013 Feb; 5(3):892-7. PubMed ID: 23298407 [TBL] [Abstract][Full Text] [Related]
27. Nanooctahedra Particles Assembled FeSe2 Microspheres Embedded into Sulfur-Doped Reduced Graphene Oxide Sheets As a Promising Anode for Sodium Ion Batteries. Zhang Z; Shi X; Yang X; Fu Y; Zhang K; Lai Y; Li J ACS Appl Mater Interfaces; 2016 Jun; 8(22):13849-56. PubMed ID: 27218287 [TBL] [Abstract][Full Text] [Related]
28. A novel one-step strategy toward ZnMn2O4/N-doped graphene nanosheets with robust chemical interaction for superior lithium storage. Wang D; Zhou W; Zhang Y; Wang Y; Wu G; Yu K; Wen G Nanotechnology; 2016 Jan; 27(4):045405. PubMed ID: 26658114 [TBL] [Abstract][Full Text] [Related]
29. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes. Yang Y; Ji X; Lu F; Chen Q; Banks CE Phys Chem Chem Phys; 2013 Sep; 15(36):15098-105. PubMed ID: 23925441 [TBL] [Abstract][Full Text] [Related]
30. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries? Yu YX Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442 [TBL] [Abstract][Full Text] [Related]
31. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. Xiao Y; Wang X; Wang W; Zhao D; Cao M ACS Appl Mater Interfaces; 2014 Feb; 6(3):2051-8. PubMed ID: 24410006 [TBL] [Abstract][Full Text] [Related]
32. Facile Synthesis of Sn/Nitrogen-Doped Reduced Graphene Oxide Nanocomposites with Superb Lithium Storage Properties. Sun Q; Huang Y; Wu S; Gao Z; Liu H; Hu P; Qie L Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31357731 [TBL] [Abstract][Full Text] [Related]
33. Tin disulphide/nitrogen-doped reduced graphene oxide/polyaniline ternary nanocomposites with ultra-high capacitance properties for high rate performance supercapacitor. Xu Z; Zhang Z; Gao L; Lin H; Xue L; Zhou Z; Zhou J; Zhuo S RSC Adv; 2018 Nov; 8(70):40252-40260. PubMed ID: 35558212 [TBL] [Abstract][Full Text] [Related]
34. Chemically integrated two-dimensional hybrid zinc manganate/graphene nanosheets with enhanced lithium storage capability. Xiong P; Liu B; Teran V; Zhao Y; Peng L; Wang X; Yu G ACS Nano; 2014 Aug; 8(8):8610-6. PubMed ID: 25072966 [TBL] [Abstract][Full Text] [Related]
35. Hole defects and nitrogen doping in graphene: implication for supercapacitor applications. Luo G; Liu L; Zhang J; Li G; Wang B; Zhao J ACS Appl Mater Interfaces; 2013 Nov; 5(21):11184-93. PubMed ID: 24134508 [TBL] [Abstract][Full Text] [Related]
36. N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. Nethravathi C; Rajamathi CR; Rajamathi M; Gautam UK; Wang X; Golberg D; Bando Y ACS Appl Mater Interfaces; 2013 Apr; 5(7):2708-14. PubMed ID: 23484751 [TBL] [Abstract][Full Text] [Related]
37. In Situ Synthesis of CuCo Wang P; Zhang Y; Yin Y; Fan L; Zhang N; Sun K ACS Appl Mater Interfaces; 2018 Apr; 10(14):11708-11714. PubMed ID: 29498512 [TBL] [Abstract][Full Text] [Related]
38. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
39. Hybrid of Co(3)Sn(2)@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. Mahmood N; Zhang C; Liu F; Zhu J; Hou Y ACS Nano; 2013 Nov; 7(11):10307-18. PubMed ID: 24127745 [TBL] [Abstract][Full Text] [Related]
40. One-pot synthesis of tin-embedded carbon/silica nanocomposites for anode materials in lithium-ion batteries. Hwang J; Woo SH; Shim J; Jo C; Lee KT; Lee J ACS Nano; 2013 Feb; 7(2):1036-44. PubMed ID: 23316943 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]