BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23495193)

  • 1. A framework for predicting three-dimensional prostate deformation in real time.
    Jahya A; Herink M; Misra S
    Int J Med Robot; 2013 Dec; 9(4):e52-60. PubMed ID: 23495193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the importance of modelling organ geometry and boundary conditions for predicting three-dimensional prostate deformation.
    Jahya A; Schouten MG; Fütterer JJ; Misra S
    Comput Methods Biomech Biomed Engin; 2014 Apr; 17(5):497-506. PubMed ID: 22769016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation and experiment of soft-tissue deformation in prostate brachytherapy.
    Liang D; Jiang S; Yang Z; Wang X
    Proc Inst Mech Eng H; 2016 Jun; 230(6):532-44. PubMed ID: 27129384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations.
    Ahn B; Kim J
    Med Image Anal; 2010 Apr; 14(2):138-48. PubMed ID: 19948423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based needle control in prostate percutaneous procedures.
    Maghsoudi A; Jahed M
    Proc Inst Mech Eng H; 2013 Jan; 227(1):58-71. PubMed ID: 23516956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.
    Burtnyk M; N'Djin WA; Kobelevskiy I; Bronskill M; Chopra R
    Phys Med Biol; 2010 Nov; 55(22):6817-39. PubMed ID: 21030751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized image-based soft tissue deformation algorithms for visualization of haptic needle insertion.
    Fortmeier D; Mastmeyer A; Handels H
    Stud Health Technol Inform; 2013; 184():136-40. PubMed ID: 23400145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining ultrasound-based elasticity estimation and FE models to predict 3D target displacement.
    Assaad W; Misra S
    Med Eng Phys; 2013 Apr; 35(4):549-54. PubMed ID: 23218758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling, simulation, and optimal initiation planning for needle insertion into the liver.
    Sharifi Sedeh R; Ahmadian MT; Janabi-Sharifi F
    J Biomech Eng; 2010 Apr; 132(4):041001. PubMed ID: 20387964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient soft tissue characterization algorithm from in vivo indentation experiments for medical simulation.
    Kim J; Ahn B; De S; Srinivasan MA
    Int J Med Robot; 2008 Sep; 4(3):277-85. PubMed ID: 18727148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on Prediction Model of Soft Tissue Deformation during Needle Insertion].
    Gao D; Zhao G; Wang S; Zhu T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Jun; 33(3):442-7. PubMed ID: 29709141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical finite element method for real-time tissue mechanics analysis.
    Mousavi SR; Khalaji I; Sadeghi Naini A; Raahemifar K; Samani A
    Comput Methods Biomech Biomed Engin; 2012; 15(6):595-608. PubMed ID: 21476154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.
    Chanthasopeephan T; Desai JP; Lau AC
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):349-59. PubMed ID: 17355046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional finite element simulations of the mechanical response of the fingertip to static and dynamic compressions.
    Wu JZ; Welcome DE; Dong RG
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):55-63. PubMed ID: 16880157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural network modelling of soft tissue deformation for surgical simulation.
    Zhang J; Zhong Y; Gu C
    Artif Intell Med; 2019 Jun; 97():61-70. PubMed ID: 30446419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An innovative application of a small-scale motion analysis technique to quantify human skin deformation in vivo.
    Mahmud J; Holt CA; Evans SL
    J Biomech; 2010 Mar; 43(5):1002-6. PubMed ID: 20005519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Needle insertion simulation by arbitrary Lagrangian-Eulerian method.
    Yamaguchi S; Satake K; Morikawa S; Shirai Y; Tanaka HT
    Stud Health Technol Inform; 2011; 163():710-2. PubMed ID: 21335885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis.
    Yamaguchi S; Tsutsui K; Satake K; Morikawa S; Shirai Y; Tanaka HT
    Comput Biol Med; 2014 Oct; 53():42-7. PubMed ID: 25127407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.