BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 23495228)

  • 1. α-N-Protected dipeptide acids: a simple and efficient synthesis via the easily accessible mixed anhydride method using free amino acids in DMSO and tetrabutylammonium hydroxide.
    Verardo G; Gorassini A
    J Pept Sci; 2013 May; 19(5):315-24. PubMed ID: 23495228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting an inherent neighboring group effect of alpha-amino acids to synthesize extremely hindered dipeptides.
    Brown ZZ; Schafmeister CE
    J Am Chem Soc; 2008 Nov; 130(44):14382-3. PubMed ID: 18841897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of functionalized guanidino amino acids.
    Suhs T; König B
    Chemistry; 2006 Oct; 12(31):8150-7. PubMed ID: 16881081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of differentially protected N-acylated reduced pseudodipeptides as building units for backbone cyclic peptides.
    Besser D; Müller B; Agricola I; Reissmann S
    J Pept Sci; 2000 Mar; 6(3):130-8. PubMed ID: 10759211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-phase synthesis of "mixed" peptidomimetics using Fmoc-protected aza-beta3-amino acids and alpha-amino acids.
    Busnel O; Bi L; Dali H; Cheguillaume A; Chevance S; Bondon A; Muller S; Baudy-Floc'h M
    J Org Chem; 2005 Dec; 70(26):10701-8. PubMed ID: 16355988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of N-carboxyalkyl and N-aminoalkyl functionalized dipeptide building units for the assembly of backbone cyclic peptides.
    Müller B; Besser D; Kleinwächter P; Arad O; Reissmann S
    J Pept Res; 1999 Nov; 54(5):383-93. PubMed ID: 10563504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of crown ethers in peptide chemistry-V. Solid-phase synthesis of peptides by the fragment condensation approach using crown ethers as non-covalent protecting groups.
    Botti P; Ball HL; Lucietto P; Pinori M; Rizzi E; Mascagni P
    J Pept Sci; 1996; 2(6):371-80. PubMed ID: 9230465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A one-pot procedure for the preparation of N-9-fluorenylmethyloxycarbonyl-α-amino diazoketones from α-amino acids.
    Siciliano C; De Marco R; Guidi LE; Spinella M; Liguori A
    J Org Chem; 2012 Dec; 77(23):10575-82. PubMed ID: 23146162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypsin-catalyzed kinetically controlled synthesis of a precursor dipeptide of thymopentin in organic solvents, using a free amino acid as nucleophile.
    Wang N; Huang YB; Xu L; Wu XX; Zhang XZ
    Prep Biochem Biotechnol; 2004 Feb; 34(1):45-56. PubMed ID: 15046296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient and highly selective deprotection of N-Fmoc-alpha-amino acid and lipophilic N-Fmoc-dipeptide methyl esters with aluminium trichloride and N,N-dimethylaniline.
    Di Gioia ML; Leggio A; Le Pera A; Siciliano C; Liguori A; Sindona G
    J Pept Res; 2004 Apr; 63(4):383-7. PubMed ID: 15102056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthogonal protecting groups for N(alpha)-amino and C-terminal carboxyl functions in solid-phase peptide synthesis.
    Albericio F
    Biopolymers; 2000; 55(2):123-39. PubMed ID: 11074410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-Chain Elongation Using Unprotected Amino Acids in a Micro-Flow Reactor.
    Fuse S; Masuda K; Otake Y; Nakamura H
    Chemistry; 2019 Nov; 25(66):15091-15097. PubMed ID: 31468609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convenient synthesis of N-methylamino acids compatible with Fmoc solid-phase peptide synthesis.
    Biron E; Kessler H
    J Org Chem; 2005 Jun; 70(13):5183-9. PubMed ID: 15960522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with fmoc chemistry and aza-amino acids with heteroatomic side chains.
    Boeglin D; Lubell WD
    J Comb Chem; 2005; 7(6):864-78. PubMed ID: 16283795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-phase synthesis of N-nosyl- and N-Fmoc-N-methyl-alpha-amino acids.
    Di Gioia ML; Leggio A; Liguori A; Perri F
    J Org Chem; 2007 May; 72(10):3723-8. PubMed ID: 17439178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the excluded protecting group (EPG) method for peptide synthesis.
    Head DB; Dong JZ; Burton JA
    J Pept Res; 2005 Mar; 65(3):384-94. PubMed ID: 15787969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urethane-protected alpha-amino acid N-carboxyanhydrides and peptide synthesis.
    Fuller WD; Goodman M; Naider FR; Zhu YF
    Biopolymers; 1996; 40(2):183-205. PubMed ID: 8785363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient synthesis of Fmoc-protected phosphinic pseudodipeptides: Building blocks for the synthesis of matrix metalloproteinase inhibitors.
    Bhowmick M; Sappidi RR; Fields GB; Lepore SD
    Biopolymers; 2011; 96(1):1-3. PubMed ID: 20225219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-phase peptide synthesis on polyethylene glycol (PEG) supports using strategies based on the 9-fluorenylmethoxycarbonyl amino protecting group: application of PEGylated peptides in biochemical assays.
    Fischer PM; Zheleva DI
    J Pept Sci; 2002 Sep; 8(9):529-42. PubMed ID: 12371706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient preparation of N-methyl-alpha-amino acids from N-nosyl-alpha-amino acid phenacyl esters.
    Leggio A; Belsito EL; De Marco R; Liguori A; Perri F; Viscomi MC
    J Org Chem; 2010 Mar; 75(5):1386-92. PubMed ID: 20121053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.