These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23495247)

  • 1. Real-time simulation of biological soft tissues: a PGD approach.
    Niroomandi S; González D; Alfaro I; Bordeu F; Leygue A; Cueto E; Chinesta F
    Int J Numer Method Biomed Eng; 2013 May; 29(5):586-600. PubMed ID: 23495247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPU-based acceleration of computations in nonlinear finite element deformation analysis.
    Mafi R; Sirouspour S
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):365-81. PubMed ID: 24166875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling biologic soft tissues for haptic feedback with an hybrid multiresolution method.
    Frisoli A; Borelli L; Bergamasco M
    Stud Health Technol Inform; 2005; 111():145-8. PubMed ID: 15718716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel machine learning based computational framework for homogenization of heterogeneous soft materials: application to liver tissue.
    Hashemi MS; Baniassadi M; Baghani M; George D; Remond Y; Sheidaei A
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1131-1142. PubMed ID: 31823106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volume Preserved Mass-Spring Model with Novel Constraints for Soft Tissue Deformation.
    Duan Y; Huang W; Chang H; Chen W; Zhou J; Teo SK; Su Y; Chui CK; Chang S
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):268-80. PubMed ID: 25398184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized image-based soft tissue deformation algorithms for visualization of haptic needle insertion.
    Fortmeier D; Mastmeyer A; Handels H
    Stud Health Technol Inform; 2013; 184():136-40. PubMed ID: 23400145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Haptic Interactive Approach to Simulation of Surgery Cutting Based on Mesh and Meshless Models.
    Cheng Q; Liu PX; Lai P; Xu S; Zou Y
    J Healthc Eng; 2018; 2018():9204949. PubMed ID: 29850006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time, haptics-enabled simulator for probing ex vivo liver tissue.
    Lister K; Gao Z; Desai JP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1196-9. PubMed ID: 19963993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time simulation of surgery by reduced-order modeling and X-FEM techniques.
    Niroomandi S; Alfaro I; González D; Cueto E; Chinesta F
    Int J Numer Method Biomed Eng; 2012 May; 28(5):574-88. PubMed ID: 25099459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time haptic cutting of high-resolution soft tissues.
    Wu J; Westermann R; Dick C
    Stud Health Technol Inform; 2014; 196():469-75. PubMed ID: 24732558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realistic soft tissue deformation strategies for real time surgery simulation.
    Shen Y; Zhou X; Zhang N; Tamma K; Sweet R
    Stud Health Technol Inform; 2008; 132():457-9. PubMed ID: 18391343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient topology modification and deformation for finite element models using condensation.
    Lee B; Popescu DC; Joshi B; Ourselin S
    Stud Health Technol Inform; 2006; 119():299-304. PubMed ID: 16404066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft tissue deformation using a nonlinear hierarchical finite element model with real-time online refinement.
    Faraci A; Bello F; Darzi A
    Stud Health Technol Inform; 2005; 111():137-44. PubMed ID: 15718715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reduced order finite element algorithm for surgical simulation.
    Taylor ZA; Ourselin S; Crozier S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():239-42. PubMed ID: 21096959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal simulation of laparoscopic Heller myotomy using a meshless technique.
    De S; Manivannan M; Kim J; Srinivasan MA; Rattner D
    Stud Health Technol Inform; 2002; 85():127-32. PubMed ID: 15458072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics-based interactive volume manipulation for sharing surgical process.
    Nakao M; Minato K
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):809-16. PubMed ID: 20371420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintaining large time steps in explicit finite element simulations using shape matching.
    Fierz B; Spillmann J; Aguinaga Hoyos I; Harders M
    IEEE Trans Vis Comput Graph; 2012 May; 18(5):717-28. PubMed ID: 22442126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid deformable model for real-time surgical simulation.
    Zhu B; Gu L
    Comput Med Imaging Graph; 2012 Jul; 36(5):356-65. PubMed ID: 22483053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.