These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 234955)

  • 1. Complexation of iron hexacyanides by cytochrome c. Evidence for electron exchange at the exposed heme edge.
    Stellwagen E; Cass RD
    J Biol Chem; 1975 Mar; 250(6):2095-8. PubMed ID: 234955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is lysine 79 a ligand for iron hexacyanides bound to cytochrome c?
    Power SD; Choucair A; Palmer G
    Biochem Biophys Res Commun; 1975 Sep; 66(1):103-7. PubMed ID: 240356
    [No Abstract]   [Full Text] [Related]  

  • 3. 1H NMR studies of the electron exchange between cytochrome c and iron hexacyanides. Definition of the iron hexacyanide binding sites on cytochrome c.
    Eley CG; Moore GR; Williams G; Williams RJ
    Eur J Biochem; 1982 May; 124(2):295-303. PubMed ID: 6284504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple low spin forms of the cytochrome c ferrihemochrome. EPR spectra of various eukaryotic and prokaryotic cytochromes c.
    Brautigan DL; Feinberg BA; Hoffman BM; Margoliash E; Preisach J; Blumberg WE
    J Biol Chem; 1977 Jan; 252(2):574-82. PubMed ID: 13072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkaline isomerization of ferricytochrome c: identification of the lysine ligand.
    Wilgus H; Stellwagen E
    Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2892-4. PubMed ID: 4368392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of specific lysine modifications to identify the site of reaction between cytochrome c and ferricyanide.
    Ahmed AJ; Millett F
    J Biol Chem; 1981 Feb; 256(4):1611-5. PubMed ID: 6257681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The study of 1-electron equivalent oxidation-reduction reactions by fast pulse generation of reagents. Cytochrome c/ferri-ferrocyanide system.
    Ilan Y; Shafferman A; Stein G
    J Biol Chem; 1976 Jul; 251(14):4336-45. PubMed ID: 6477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reaction of Rhodospirillum rubrum cytochrome c2 with iron hexacyanides.
    Wood FE; Cusanovich MA
    Bioinorg Chem; 1975 Jul; 4(4):337-52. PubMed ID: 238661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oxidation of ferrocytochrome c in nonbinding buffer.
    Peterman BF; Morton RA
    Can J Biochem; 1977 Aug; 55(8):796-803. PubMed ID: 196725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the redox reactions of various types of cytochrome c with iron hexacyanides.
    Kihara H
    Biochim Biophys Acta; 1981 Jan; 634(1):93-104. PubMed ID: 6258647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferred sites for electron transfer between cytochrome c and iron and cobalt complexes.
    Butler J; Chapman SK; Davies DM; Sykes AG; Speck SH; Osheroff N; Margoliash E
    J Biol Chem; 1983 May; 258(10):6400-4. PubMed ID: 6304037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of specific trifluoroacetylation of individual cytochrome c lysines on the reaction with cytochrome oxidase.
    Staudenmayer N; Ng S; Smith MB; Millett F
    Biochemistry; 1977 Feb; 16(4):600-4. PubMed ID: 189807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of electron transfer between cytochrome c and iron hexacyanides. Evidence for two electron-transfer sites.
    Cho KC; Chu WF; Choy CL; Che CM
    Biochim Biophys Acta; 1988 Jul; 934(2):161-8. PubMed ID: 2839234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional role of heme ligation in cytochrome c. Effects of replacement of methionine 80 with natural and non-natural residues by semisynthesis.
    Wallace CJ; Clark-Lewis I
    J Biol Chem; 1992 Feb; 267(6):3852-61. PubMed ID: 1310985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metalloprotein electron transfer reactions: analysis of reactivity of horse heart cytochrome c with inorganic complexes.
    Wherland S; Gray HB
    Proc Natl Acad Sci U S A; 1976 Sep; 73(9):2950-4. PubMed ID: 184452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction of C-type cytochromes with the iron hexacyanides. Mechanistic implications.
    Ohno N; Cusanovich MA
    Biophys J; 1981 Dec; 36(3):589-605. PubMed ID: 6275920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transport by C-type cytochromes. I. The reaction of horse heart cytochrome c with anionic reductants.
    Miller WG; Cusanovich MA
    Biophys Struct Mech; 1975 Feb; 1(2):97-111. PubMed ID: 10021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of guanidinated cytochrome c by 13C nuclear magnetic resonance spectroscopy.
    Stellwagen E; Smith LM; Cass R; Ledger R; Wilgus H
    Biochemistry; 1977 Aug; 16(16):3672-9. PubMed ID: 196638
    [No Abstract]   [Full Text] [Related]  

  • 19. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c.
    Rodríguez-Marañón MJ; Qiu F; Stark RE; White SP; Zhang X; Foundling SI; Rodríguez V; Schilling CL; Bunce RA; Rivera M
    Biochemistry; 1996 Dec; 35(50):16378-90. PubMed ID: 8973214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The binding domain on horse cytochrome c and Rhodobacter sphaeroides cytochrome c2 for the Rhodobacter sphaeroides cytochrome bc1 complex.
    Hall J; Zha XH; Yu L; Yu CA; Millett F
    Biochemistry; 1987 Jul; 26(14):4501-4. PubMed ID: 2822095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.