These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
539 related articles for article (PubMed ID: 23496088)
1. Hybridization of bioelectrochemically functional infinite coordination polymer nanoparticles with carbon nanotubes for highly sensitive and selective in vivo electrochemical monitoring. Lu X; Cheng H; Huang P; Yang L; Yu P; Mao L Anal Chem; 2013 Apr; 85(8):4007-13. PubMed ID: 23496088 [TBL] [Abstract][Full Text] [Related]
2. Physiologically relevant online electrochemical method for continuous and simultaneous monitoring of striatum glucose and lactate following global cerebral ischemia/reperfusion. Lin Y; Zhu N; Yu P; Su L; Mao L Anal Chem; 2009 Mar; 81(6):2067-74. PubMed ID: 19281258 [TBL] [Abstract][Full Text] [Related]
3. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors. Zhou H; Zhang Z; Yu P; Su L; Ohsaka T; Mao L Langmuir; 2010 Apr; 26(8):6028-32. PubMed ID: 20121055 [TBL] [Abstract][Full Text] [Related]
4. Rational design and one-step formation of multifunctional gel transducer for simple fabrication of integrated electrochemical biosensors. Yu P; Zhou H; Cheng H; Qian Q; Mao L Anal Chem; 2011 Jul; 83(14):5715-20. PubMed ID: 21644589 [TBL] [Abstract][Full Text] [Related]
5. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Ma W; Jiang Q; Yu P; Yang L; Mao L Anal Chem; 2013 Aug; 85(15):7550-7. PubMed ID: 23815314 [TBL] [Abstract][Full Text] [Related]
6. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase. Muguruma H; Hoshino T; Nowaki K ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical post-treatment of infinite coordination polymers: an effective route to preparation of Pd nanoparticles supported onto carbon nanotubes with enhanced electrocatalytic activity toward ethanol oxidation. Ren L; Yang L; Yu P; Wang Y; Mao L ACS Appl Mater Interfaces; 2013 Nov; 5(21):11471-8. PubMed ID: 24159926 [TBL] [Abstract][Full Text] [Related]
8. Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain. Cheng H; Yu P; Lu X; Lin Y; Ohsaka T; Mao L Analyst; 2013 Jan; 138(1):179-85. PubMed ID: 23120750 [TBL] [Abstract][Full Text] [Related]
9. A selective and sensitive D-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode. Li L; Liang B; Shi J; Li F; Mascini M; Liu A Biosens Bioelectron; 2012 Mar; 33(1):100-5. PubMed ID: 22251747 [TBL] [Abstract][Full Text] [Related]
10. Rational Design of Bioelectrochemically Multifunctional Film with Oxidase, Ferrocene, and Graphene Oxide for Development of in Vivo Electrochemical Biosensors. Wang X; Li Q; Xu J; Wu S; Xiao T; Hao J; Yu P; Mao L Anal Chem; 2016 Jun; 88(11):5885-91. PubMed ID: 27146343 [TBL] [Abstract][Full Text] [Related]
11. Strong interaction between imidazolium-based polycationic polymer and ferricyanide: toward redox potential regulation for selective in vivo electrochemical measurements. Zhuang X; Wang D; Lin Y; Yang L; Yu P; Jiang W; Mao L Anal Chem; 2012 Feb; 84(4):1900-6. PubMed ID: 22263742 [TBL] [Abstract][Full Text] [Related]
12. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Zhou M; Shang L; Li B; Huang L; Dong S Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421 [TBL] [Abstract][Full Text] [Related]
13. Simple detection of nucleic acids with a single-walled carbon-nanotube-based electrochemical biosensor. Yang K; Zhang CY Biosens Bioelectron; 2011 Oct; 28(1):257-62. PubMed ID: 21816598 [TBL] [Abstract][Full Text] [Related]
14. Electrochemistry and current control in surface films based on silica-azure redox nanoparticles, carbon nanotubes, enzymes, and polyelectrolytes. Karra S; Zhang M; Gorski W Anal Chem; 2013 Jan; 85(2):1208-14. PubMed ID: 23244040 [TBL] [Abstract][Full Text] [Related]
15. Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Tsai TW; Heckert G; Neves LF; Tan Y; Kao DY; Harrison RG; Resasco DE; Schmidtke DW Anal Chem; 2009 Oct; 81(19):7917-25. PubMed ID: 19788314 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical deposition of Pt nanoparticles on carbon nanotube patterns for glucose detection. Zeng Z; Zhou X; Huang X; Wang Z; Yang Y; Zhang Q; Boey F; Zhang H Analyst; 2010 Jul; 135(7):1726-30. PubMed ID: 20436966 [TBL] [Abstract][Full Text] [Related]
17. Continuous and simultaneous electrochemical measurements of glucose, lactate, and ascorbate in rat brain following brain ischemia. Lin Y; Yu P; Hao J; Wang Y; Ohsaka T; Mao L Anal Chem; 2014 Apr; 86(8):3895-901. PubMed ID: 24621127 [TBL] [Abstract][Full Text] [Related]
18. A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer. Deng L; Wang Y; Shang L; Wen D; Wang F; Dong S Biosens Bioelectron; 2008 Dec; 24(4):957-63. PubMed ID: 18818067 [TBL] [Abstract][Full Text] [Related]
19. A third generation glucose biosensor based on cellobiose dehydrogenase from Corynascus thermophilus and single-walled carbon nanotubes. Tasca F; Zafar MN; Harreither W; Nöll G; Ludwig R; Gorton L Analyst; 2011 May; 136(10):2033-6. PubMed ID: 20672160 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of an amperometric bienzyme biosensing system with neutral red functionalized carbon nanotubes. Jeykumari DR; Narayanan SS Analyst; 2009 Aug; 134(8):1618-22. PubMed ID: 20448929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]