These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 23496143)
21. Size and composition dependent multiple exciton generation efficiency in PbS, PbSe, and PbS(x)Se(1-x) alloyed quantum dots. Midgett AG; Luther JM; Stewart JT; Smith DK; Padilha LA; Klimov VI; Nozik AJ; Beard MC Nano Lett; 2013 Jul; 13(7):3078-85. PubMed ID: 23750998 [TBL] [Abstract][Full Text] [Related]
22. Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity. Smith DK; Luther JM; Semonin OE; Nozik AJ; Beard MC ACS Nano; 2011 Jan; 5(1):183-90. PubMed ID: 21141910 [TBL] [Abstract][Full Text] [Related]
23. Scanning tunneling spectroscopy of individual PbSe quantum dots and molecular aggregates stabilized in an inert nanocrystal matrix. Overgaag K; Liljeroth P; Grandidier B; Vanmaekelbergh D ACS Nano; 2008 Mar; 2(3):600-6. PubMed ID: 19206586 [TBL] [Abstract][Full Text] [Related]
24. Ultrasound-assisted synthesis of PbS quantum dots stabilized by 1,2-benzenedimethanethiol and attachment to single-walled carbon nanotubes. Das A; Wai CM Ultrason Sonochem; 2014 Mar; 21(2):892-900. PubMed ID: 24074959 [TBL] [Abstract][Full Text] [Related]
25. Simple and accurate quantification of quantum dots via single-particle counting. Zhang CY; Johnson LW J Am Chem Soc; 2008 Mar; 130(12):3750-1. PubMed ID: 18311984 [TBL] [Abstract][Full Text] [Related]
26. Electrogenerated chemiluminescence from PbS quantum dots. Sun L; Bao L; Hyun BR; Bartnik AC; Zhong YW; Reed JC; Pang DW; Abruña HD; Malliaras GG; Wise FW Nano Lett; 2009 Feb; 9(2):789-93. PubMed ID: 19115964 [TBL] [Abstract][Full Text] [Related]
27. Single-pot biofabrication of zinc sulfide immuno-quantum dots. Zhou W; Schwartz DT; Baneyx F J Am Chem Soc; 2010 Apr; 132(13):4731-8. PubMed ID: 20218715 [TBL] [Abstract][Full Text] [Related]
28. Cation exchange-based facile aqueous synthesis of small, stable, and nontoxic near-infrared Ag₂Te/ZnS core/shell quantum dots emitting in the second biological window. Chen C; He X; Gao L; Ma N ACS Appl Mater Interfaces; 2013 Feb; 5(3):1149-55. PubMed ID: 23324052 [TBL] [Abstract][Full Text] [Related]
29. Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure. Zhou N; Yang Y; Huang X; Wu H; Luo Y; Li D; Meng Q ChemSusChem; 2013 Apr; 6(4):687-92. PubMed ID: 23495072 [TBL] [Abstract][Full Text] [Related]
30. Dithiocarbamates as capping ligands for water-soluble quantum dots. Zhang Y; Schnoes AM; Clapp AR ACS Appl Mater Interfaces; 2010 Nov; 2(11):3384-95. PubMed ID: 21053924 [TBL] [Abstract][Full Text] [Related]
31. Single molecular stamping of a sub-10-nm colloidal quantum dot array. Hoshino K; Turner TC; Kim S; Gopal A; Zhang X Langmuir; 2008 Dec; 24(23):13804-8. PubMed ID: 18991412 [TBL] [Abstract][Full Text] [Related]
32. Effect of ligand density on the spectral, physical, and biological characteristics of CdSe/ZnS quantum dots. Clarke SJ; Hollmann CA; Aldaye FA; Nadeau JL Bioconjug Chem; 2008 Feb; 19(2):562-8. PubMed ID: 18201063 [TBL] [Abstract][Full Text] [Related]
34. Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers. Zhao H; Wang D; Zhang T; Chaker M; Ma D Chem Commun (Camb); 2010 Aug; 46(29):5301-3. PubMed ID: 20544116 [TBL] [Abstract][Full Text] [Related]
35. Role of surface ligands in optical properties of colloidal CdSe/CdS quantum dots. Ning Z; Molnár M; Chen Y; Friberg P; Gan L; Ågren H; Fu Y Phys Chem Chem Phys; 2011 Apr; 13(13):5848-54. PubMed ID: 21327188 [TBL] [Abstract][Full Text] [Related]
36. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related]
37. Tolerance of Intrinsic Defects in PbS Quantum Dots. Zherebetskyy D; Zhang Y; Salmeron M; Wang LW J Phys Chem Lett; 2015 Dec; 6(23):4711-6. PubMed ID: 26554672 [TBL] [Abstract][Full Text] [Related]
38. Density functional study of the structures of lead sulfide clusters (PbS)n (n = 1-9). Zeng H; Schelly ZA; Ueno-Noto K; Marynick DS J Phys Chem A; 2005 Mar; 109(8):1616-20. PubMed ID: 16833485 [TBL] [Abstract][Full Text] [Related]
39. The Frontiers of Nanomaterials (SnS, PbS and CuS) for Dye-Sensitized Solar Cell Applications: An Exciting New Infrared Material. Meyer EL; Mbese JZ; Agoro MA Molecules; 2019 Nov; 24(23):. PubMed ID: 31757087 [TBL] [Abstract][Full Text] [Related]
40. Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling. Geiregat P; Justo Y; Abe S; Flamee S; Hens Z ACS Nano; 2013 Feb; 7(2):987-93. PubMed ID: 23297750 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]