BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23496178)

  • 1. Taylor dispersion analysis in coiled capillaries at high flow rates.
    Lewandrowska A; Majcher A; Ochab-Marcinek A; Tabaka M; Hołyst R
    Anal Chem; 2013 Apr; 85(8):4051-6. PubMed ID: 23496178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taylor dispersion analysis in fused silica capillaries: a tutorial review.
    Moser MR; Baker CA
    Anal Methods; 2021 Jun; 13(21):2357-2373. PubMed ID: 33999088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-based characterization by the coupling of capillary electrophoresis to Taylor dispersion analysis.
    Saux TL; Cottet H
    Anal Chem; 2008 Mar; 80(5):1829-32. PubMed ID: 18247486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dispersion in pre-turbulent and sustained turbulent flow of carbon dioxide.
    Gritti F; Fogwill M
    J Chromatogr A; 2018 Aug; 1564():176-187. PubMed ID: 29891403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of taylor-aris dispersion for measurement of a solute diffusion coefficient in thin capillaries.
    Bello MS; Rezzonico R; Righetti PG
    Science; 1994 Nov; 266(5186):773-6. PubMed ID: 17730397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taylor dispersion monitored by electrospray mass spectrometry: a novel approach for studying diffusion in solution.
    Clark SM; Leaist DG; Konermann L
    Rapid Commun Mass Spectrom; 2002; 16(15):1454-62. PubMed ID: 12125022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of capillary coiling to zone dispersion in capillary zone electrophoresis.
    Kasicka V; Prusík Z; Gas B; Stĕdrý M
    Electrophoresis; 1995 Nov; 16(11):2034-8. PubMed ID: 8748733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An approach to ideal separation media for (electro)chromatography.
    Hjertén S; Végvári A; Srichaiyo T; Zhang HX; Ericson C; Eaker D
    J Capillary Electrophor; 1998; 5(1-2):13-26. PubMed ID: 10327365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid determination of hydrodynamic radii beyond the limits of Taylor dispersion.
    Latunde-Dada S; Bott R; Crozier J; Trikeriotis M; Leszczyszyn OI; Goodall D
    J Chromatogr A; 2016 Nov; 1472():66-73. PubMed ID: 27773390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of hydrophilic coated gold nanoparticles via capillary electrophoresis and Taylor dispersion analysis. Part II: Determination of the hydrodynamic radius distribution - Comparison with asymmetric flow field-flow fractionation.
    Pyell U; Jalil AH; Urban DA; Pfeiffer C; Pelaz B; Parak WJ
    J Colloid Interface Sci; 2015 Nov; 457():131-40. PubMed ID: 26164244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: propanol as background electrolyte solvent.
    Palonen S; Porras SP; Jussila M; Riekkola ML
    Electrophoresis; 2003 May; 24(10):1565-76. PubMed ID: 12761786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Taylor dispersion injections: determining kinetic/affinity interaction constants and diffusion coefficients in label-free biosensing.
    Quinn JG
    Anal Biochem; 2012 Feb; 421(2):401-10. PubMed ID: 22197422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of Taylor dispersion in pharmacokinetic and multiple indicator dilution modelling.
    Fallon MS; Howell BA; Chauhan A
    Math Med Biol; 2009 Dec; 26(4):263-96. PubMed ID: 19318591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical and experimental investigation of analyte breakthrough from sampling loops used for multi-dimensional liquid chromatography.
    Moussa A; Lauer T; Stoll D; Desmet G; Broeckhoven K
    J Chromatogr A; 2020 Aug; 1626():461283. PubMed ID: 32797812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modeling and experimental optimization of Taylor dispersion analysis with and without an electric field.
    Chenyakin Y; Chen DDY
    Electrophoresis; 2024 Mar; ():. PubMed ID: 38506142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary-based instrument for the simultaneous measurement of solution viscosity and solute diffusion coefficient at pressures up to 2000 bar and implications for ultrahigh pressure liquid chromatography.
    Kaiser TJ; Thompson JW; Mellors JS; Jorgenson JW
    Anal Chem; 2009 Apr; 81(8):2860-8. PubMed ID: 19298084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and theory of open-tube dispersion in short and long capillaries with slip boundaries and retention.
    Beauchamp MD; Schure MR
    J Chromatogr A; 2019 Mar; 1588():85-98. PubMed ID: 30685185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of drug diffusivities in pharmaceutical solvents using Taylor dispersion analysis.
    Ye F; Jensen H; Larsen SW; Yaghmur A; Larsen C; Østergaard J
    J Pharm Biomed Anal; 2012 Mar; 61():176-83. PubMed ID: 22197153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular diffusivity of phenol in sub- and supercritical water: application of the split-flow Taylor dispersion technique.
    Plugatyr A; Svishchev IM
    J Phys Chem B; 2011 Mar; 115(11):2555-62. PubMed ID: 21366218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of neutral cyclodextrin concentration on plate numbers in capillary electrophoresis.
    Seals TH; Sheng C; Davis JM
    Electrophoresis; 2001 Jun; 22(10):1957-73. PubMed ID: 11465494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.