These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23496436)

  • 61. Conventional and combined pump-and-treat systems under nonuniform background flow.
    Bayer P; Finkel M
    Ground Water; 2006; 44(2):234-43. PubMed ID: 16556205
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interpretation of environmental tracers in groundwater systems with stagnant water zones.
    Maloszewski P; Stichler W; Zuber A
    Isotopes Environ Health Stud; 2004 Mar; 40(1):21-33. PubMed ID: 15085981
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses.
    Peter A; Steinbach A; Liedl R; Ptak T; Michaelis W; Teutsch G
    J Contam Hydrol; 2004 Jul; 71(1-4):127-54. PubMed ID: 15145565
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simulating Head Recovery and Intermittent Discharge in Free Flowing Wells.
    Székely F
    Ground Water; 2017 Nov; 55(6):879-884. PubMed ID: 28591459
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Probability density function of non-reactive solute concentration in heterogeneous porous formations.
    Bellin A; Tonina D
    J Contam Hydrol; 2007 Oct; 94(1-2):109-25. PubMed ID: 17628204
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evolution model of δ³⁴S and δ¹⁸O in dissolved sulfate in volcanic fan aquifers from recharge to coastal zone and through the Jakarta urban area, Indonesia.
    Hosono T; Delinom R; Nakano T; Kagabu M; Shimada J
    Sci Total Environ; 2011 Jun; 409(13):2541-54. PubMed ID: 21507462
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia.
    Marković T; Brkić Ž; Larva O
    Sci Total Environ; 2013 Aug; 458-460():508-16. PubMed ID: 23707721
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Simplified Solution Using Izbash's Equation for Non-Darcian Flow in a Constant Rate Pumping Test.
    Xiao L; Ye M; Xu Y; Gan F
    Ground Water; 2019 Nov; 57(6):962-968. PubMed ID: 30937895
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Boundary condition effects on maximum groundwater withdrawal in coastal aquifers.
    Lu C; Chen Y; Luo J
    Ground Water; 2012; 50(3):386-93. PubMed ID: 22050244
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chemical variability of groundwater samples collected from a coal seam gas exploration well, Maramarua, New Zealand.
    Taulis M; Milke M
    Water Res; 2013 Mar; 47(3):1021-34. PubMed ID: 23199455
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modeling surface water-groundwater interaction with MODFLOW: some considerations.
    Brunner P; Simmons CT; Cook PG; Therrien R
    Ground Water; 2010; 48(2):174-80. PubMed ID: 19891721
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Determining hydraulic conductivity using pumping data from low-flow sampling.
    Robbins GA; Aragon-Jose AT; Romero A
    Ground Water; 2009; 47(2):271-86. PubMed ID: 19040434
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fuzzy-stochastic characterization of site uncertainty and variability in groundwater flow and contaminant transport through a heterogeneous aquifer.
    Zhang K; Li H; Achari G
    J Contam Hydrol; 2009 Apr; 106(1-2):73-82. PubMed ID: 19217686
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optimal groundwater contamination monitoring using pumping wells.
    Shlomi S; Ostfeld A; Rubin H; Shoemaker C
    Water Sci Technol; 2010; 62(3):556-69. PubMed ID: 20706003
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: From field-scale concentration patterns in groundwater to catchment-scale surface water quality.
    Rozemeijer JC; van der Velde Y; van Geer FC; Bierkens MF; Broers HP
    Environ Pollut; 2010 Dec; 158(12):3571-9. PubMed ID: 20869143
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Closed-form approximations for two-dimensional groundwater age patterns in a fresh water lens.
    Greskowiak J; Röper T; Post VE
    Ground Water; 2013; 51(4):629-34. PubMed ID: 23025689
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microbiological response to well pumping.
    Kwon MJ; Sanford RA; Park J; Kirk MF; Bethke CM
    Ground Water; 2008; 46(2):286-94. PubMed ID: 18194327
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices.
    Resto PJ; Berthier E; Beebe DJ; Williams JC
    Lab Chip; 2012 Jun; 12(12):2221-8. PubMed ID: 22441561
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer.
    Orban P; Brouyère S; Batlle-Aguilar J; Couturier J; Goderniaux P; Leroy M; Maloszewski P; Dassargues A
    J Contam Hydrol; 2010 Oct; 118(1-2):79-93. PubMed ID: 20864207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.