These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Truncated Lévy flights and weak ergodicity breaking in the Hamiltonian mean-field model. Figueiredo A; Filho TM; Amato MA; Oliveira ZT; Matsushita R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022106. PubMed ID: 25353421 [TBL] [Abstract][Full Text] [Related]
5. Inequivalence of time and ensemble averages in ergodic systems: exponential versus power-law relaxation in confinement. Jeon JH; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021147. PubMed ID: 22463192 [TBL] [Abstract][Full Text] [Related]
6. Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results. Ilyin V; Procaccia I; Zagorodny A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):030105. PubMed ID: 20365685 [TBL] [Abstract][Full Text] [Related]
8. Diffusion of finite-size particles in confined geometries. Bruna M; Chapman SJ Bull Math Biol; 2014 Apr; 76(4):947-82. PubMed ID: 23660951 [TBL] [Abstract][Full Text] [Related]
9. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model. Chavanis PH; Delfini L Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032139. PubMed ID: 24730821 [TBL] [Abstract][Full Text] [Related]
11. Lattice statistical theory of random walks on a fractal-like geometry. Kozak JJ; Garza-López RA; Abad E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032147. PubMed ID: 24730829 [TBL] [Abstract][Full Text] [Related]
12. Biased diffusion inside regular islands under random symplectic perturbations. Kruscha A; Ketzmerick R; Kantz H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066210. PubMed ID: 23005199 [TBL] [Abstract][Full Text] [Related]
13. Lévy walks with velocity fluctuations. Denisov S; Zaburdaev V; Hänggi P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031148. PubMed ID: 22587079 [TBL] [Abstract][Full Text] [Related]
14. Characterizing steady-state and transient properties of reaction-diffusion systems. Dorosz S; Pleimling M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061114. PubMed ID: 20365125 [TBL] [Abstract][Full Text] [Related]
15. Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics. Lizana L; Ambjörnsson T Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051103. PubMed ID: 20364943 [TBL] [Abstract][Full Text] [Related]
17. Superdiffusion and transport in two-dimensional systems with Lévy-like quenched disorder. Burioni R; Ubaldi E; Vezzani A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022135. PubMed ID: 25353450 [TBL] [Abstract][Full Text] [Related]
18. Fractional Lévy stable motion can model subdiffusive dynamics. Burnecki K; Weron A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021130. PubMed ID: 20866798 [TBL] [Abstract][Full Text] [Related]
19. Efficient lattice Boltzmann algorithm for Brownian suspensions. Mynam M; Sunthar P; Ansumali S Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2237-45. PubMed ID: 21536570 [TBL] [Abstract][Full Text] [Related]
20. Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature. Chavanis PH; Sire C Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031131. PubMed ID: 21517478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]