These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 23496517)

  • 1. Colloidal lattice shearing and rupturing with a driven line of particles.
    Libál A; Csíki BM; Reichhardt CJ; Reichhardt C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022308. PubMed ID: 23496517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of colloids in a narrow channel driven by a nonuniform force.
    Tkachenko DV; Misko VR; Peeters FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051401. PubMed ID: 20364979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region.
    Shojaaee Z; Roux JN; Chevoir F; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011301. PubMed ID: 23005405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Langevin dynamics simulations of a two-dimensional colloidal crystal under confinement and shear.
    Wilms D; Virnau P; Sengupta S; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061406. PubMed ID: 23005095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology and shear band suppression in particle and chain mixtures.
    Regev I; Reichhardt C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):020201. PubMed ID: 23496443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequilibrium condensation and coarsening of field-driven dipolar colloids.
    Jäger S; Schmidle H; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011402. PubMed ID: 23005412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion, relaxation dynamics, and diffusion processes in two-dimensional colloidal crystals confined between walls.
    Wilms D; Virnau P; Snook IK; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051404. PubMed ID: 23214781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shearing instability of a dilute granular mixture.
    Brey JJ; Ruiz-Montero MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022210. PubMed ID: 23496508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging the rheology of granular flows in three regimes.
    Chialvo S; Sun J; Sundaresan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021305. PubMed ID: 22463200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition dynamics and magic-number-like behavior of frictional granular clusters.
    Tordesillas A; Walker DM; Froyland G; Zhang J; Behringer RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011306. PubMed ID: 23005410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic waves in the presence of a granular shear band formed by direct shear.
    Zhang Q; Li Y; Hou M; Jiang Y; Liu M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031306. PubMed ID: 22587091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids.
    Zaccone A; Wu H; Gentili D; Morbidelli M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051404. PubMed ID: 20364982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suspensions of repulsive colloidal particles near the glass transition: Time and frequency domain descriptions.
    Roldán-Vargas S; de Vicente J; Barnadas-Rodríguez R; Quesada-Pérez M; Estelrich J; Callejas-Fernández J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021406. PubMed ID: 20866808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonaffine measures of particle displacements in sheared colloidal glasses.
    Chikkadi V; Schall P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031402. PubMed ID: 22587096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear flow of dense granular materials near smooth walls. II. Block formation and suppression of slip by rolling friction.
    Shojaaee Z; Brendel L; Török J; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011302. PubMed ID: 23005406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization on prestructured seeds.
    Jungblut S; Dellago C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012305. PubMed ID: 23410329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rotne-Prager-Yamakawa approximation for periodic systems in a shear flow.
    Mizerski KA; Wajnryb E; Zuk PJ; Szymczak P
    J Chem Phys; 2014 May; 140(18):184103. PubMed ID: 24832249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhomogeneous shear flows in soft jammed materials with tunable attractive forces.
    Chaudhuri P; Berthier L; Bocquet L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021503. PubMed ID: 22463215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer.
    Jäger S; Stark H; Klapp SH
    J Phys Condens Matter; 2013 May; 25(19):195104. PubMed ID: 23587804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural phases of colloids interacting via a flat-well potential.
    Costa Campos LQ; de Souza Silva CC; Apolinario SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051402. PubMed ID: 23214779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.