These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 23496525)

  • 1. Classical nucleation theory with a radius-dependent surface tension: a two-dimensional lattice-gas automata model.
    Hickey J; L'Heureux I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022406. PubMed ID: 23496525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo tests of nucleation concepts in the lattice gas model.
    Schmitz F; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053302. PubMed ID: 23767652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.
    Onischuk AA; Purtov PA; Baklanov AM; Karasev VV; Vosel SV
    J Chem Phys; 2006 Jan; 124(1):14506. PubMed ID: 16409040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curvature Dependence of the Liquid-Vapor Surface Tension beyond the Tolman Approximation.
    Bruot N; Caupin F
    Phys Rev Lett; 2016 Feb; 116(5):056102. PubMed ID: 26894721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters.
    Hrubý J; Labetski DG; van Dongen ME
    J Chem Phys; 2007 Oct; 127(16):164720. PubMed ID: 17979384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study of homogeneous nucleation from the bismuth supersaturated vapor: evaluation of the surface tension of critical nucleus.
    Onischuk AA; Vosel SV; Borovkova OV; Baklanov AM; Karasev VV; di Stasio S
    J Chem Phys; 2012 Jun; 136(22):224506. PubMed ID: 22713056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-liquid surface tensions of critical nuclei and nucleation barriers from a phase-field-crystal study of a model binary alloy using finite system sizes.
    Choudhary MA; Kundin J; Emmerich H; Oettel M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022403. PubMed ID: 25215738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation kinetics in deionized charged colloidal model systems: a quantitative study by means of classical nucleation theory.
    Wette P; Schöpe HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051405. PubMed ID: 17677063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy and the Tolman Parameter in Nucleation Theory.
    Schmelzer JWP; Abyzov AS; Baidakov VG
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jamming, relaxation, and crystallization of a supercooled fluid in a three-dimensional lattice.
    Levit H; Rotman Z; Eisenberg E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011502. PubMed ID: 22400572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excess equimolar radius of liquid drops.
    Horsch M; Hasse H; Shchekin AK; Agarwal A; Eckelsbach S; Vrabec J; Müller EA; Jackson G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031605. PubMed ID: 22587106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas-liquid nucleation in a two dimensional system.
    Santra M; Chakrabarty S; Bagchi B
    J Chem Phys; 2008 Dec; 129(23):234704. PubMed ID: 19102549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-Dependent Surface Free Energy and Tolman-Corrected Droplet Nucleation of TIP4P/2005 Water.
    Joswiak MN; Duff N; Doherty MF; Peters B
    J Phys Chem Lett; 2013 Dec; 4(24):4267-72. PubMed ID: 26296177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and melting of droplets in cold vapors.
    L'Hermite JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051602. PubMed ID: 20364990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the discrepancies between experiment, theory, and simulation for the homogeneous gas-to-liquid nucleation of 1-pentanol.
    Nellas RB; Keasler SJ; Siepmann JI; Chen B
    J Chem Phys; 2010 Apr; 132(16):164517. PubMed ID: 20441298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of classical nucleation theory for Ising models.
    Ryu S; Cai W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):030601. PubMed ID: 20365686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.