These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 23496594)
1. Noise, synchrony, and correlations at the edge of chaos. Pluchino A; Rapisarda A; Tsallis C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022910. PubMed ID: 23496594 [TBL] [Abstract][Full Text] [Related]
2. Noisy coupled logistic maps in the vicinity of chaos threshold. Tirnakli U; Tsallis C Chaos; 2016 Apr; 26(4):043114. PubMed ID: 27131493 [TBL] [Abstract][Full Text] [Related]
3. Aging in coherent noise models and natural time. Tirnakli U; Abe S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056120. PubMed ID: 15600705 [TBL] [Abstract][Full Text] [Related]
4. Chaos in networks with time-delayed couplings. Kinzel W Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120461. PubMed ID: 23960219 [TBL] [Abstract][Full Text] [Related]
5. Equivalence between the mobility edge of electronic transport on disorderless networks and the onset of chaos via intermittency in deterministic maps. Martínez-Mares M; Robledo A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):045201. PubMed ID: 19905380 [TBL] [Abstract][Full Text] [Related]
6. Introduction to anti-control of discrete chaos: theory and applications. Chen G; Shi Y Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2433-47. PubMed ID: 16893796 [TBL] [Abstract][Full Text] [Related]
7. Memory effects in the statistics of interoccurrence times between large returns in financial records. Bogachev MI; Bunde A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036114. PubMed ID: 18851112 [TBL] [Abstract][Full Text] [Related]
9. Control of chaos in nonlinear systems with time-periodic coefficients. Sinha SC; Dávid A Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2417-32. PubMed ID: 16893795 [TBL] [Abstract][Full Text] [Related]
10. Transition to complete synchronization and global intermittent synchronization in an array of time-delay systems. Suresh R; Senthilkumar DV; Lakshmanan M; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016212. PubMed ID: 23005512 [TBL] [Abstract][Full Text] [Related]
11. Noise-induced phase locking in coupled coherence-resonance oscillators. Ohtaki M; Tanaka T; Miyakawa K Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056219. PubMed ID: 15600740 [TBL] [Abstract][Full Text] [Related]
13. Control of chaos: methods and applications in mechanics. Fradkov AL; Evans RJ; Andrievsky BR Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2279-307. PubMed ID: 16893789 [TBL] [Abstract][Full Text] [Related]
14. Delayed feedback control of chaos. Pyragas K Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2309-34. PubMed ID: 16893790 [TBL] [Abstract][Full Text] [Related]
15. Theoretical and experimental studies of parameter estimation based on chaos feedback synchronization. Zhang Y; Tao C; Jiang JJ Chaos; 2006 Dec; 16(4):043122. PubMed ID: 17199400 [TBL] [Abstract][Full Text] [Related]
16. Adaptation to the edge of chaos in the self-adjusting logistic map. Melby P; Kaidel J; Weber N; Hübler A Phys Rev Lett; 2000 Jun; 84(26 Pt 1):5991-3. PubMed ID: 10991106 [TBL] [Abstract][Full Text] [Related]
17. Relation between optimal nonlinearity and non-Gaussian noise: enhancing a weak signal in a nonlinear system. Ichiki A; Tadokoro Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012124. PubMed ID: 23410300 [TBL] [Abstract][Full Text] [Related]
18. Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations. Chacón R Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2335-51. PubMed ID: 16893791 [TBL] [Abstract][Full Text] [Related]
19. Coexisting chaotic and periodic dynamics in clock escapements. Moon FC; Stiefel PD Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2539-63. PubMed ID: 16893802 [TBL] [Abstract][Full Text] [Related]