These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23496609)

  • 1. Microfluidics of imbibition in random porous media.
    Wiklund HS; Uesaka T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023006. PubMed ID: 23496609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary imbibition and flow of wetting liquid in irregular capillaries: A 100-year review.
    Cai J; Chen Y; Liu Y; Li S; Sun C
    Adv Colloid Interface Sci; 2022 Jun; 304():102654. PubMed ID: 35468356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann simulations of liquid CO
    Chen Y; Li Y; Valocchi AJ; Christensen KT
    J Contam Hydrol; 2018 May; 212():14-27. PubMed ID: 29054787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroosmosis in homogeneously charged micro- and nanoscale random porous media.
    Wang M; Chen S
    J Colloid Interface Sci; 2007 Oct; 314(1):264-73. PubMed ID: 17585928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of level-set method for deposition in three-dimensional reconstructed porous media.
    Vu MT; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053301. PubMed ID: 25353909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the effects of porous media structure on mixing-controlled reactions using pore-scale modeling and micromodel experiments.
    Willingham TW; Werth CJ; Valocchi AJ
    Environ Sci Technol; 2008 May; 42(9):3185-93. PubMed ID: 18522092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore-scale analysis of Newtonian flow in the explicit geometry of vertebral trabecular bones using lattice Boltzmann simulation.
    Zeiser T; Bashoor-Zadeh M; Darabi A; Baroud G
    Proc Inst Mech Eng H; 2008 Feb; 222(2):185-94. PubMed ID: 18441754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural optimization of porous media for fast and controlled capillary flows.
    Shou D; Fan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053021. PubMed ID: 26066262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical surface affinity of diphasic liquids as a probe of wettability of multimodal porous media.
    Korb JP; Freiman G; Nicot B; Ligneul P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061601. PubMed ID: 20365175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluids in porous media. I. A hard sponge model.
    Zhao SL; Dong W; Liu QH
    J Chem Phys; 2006 Dec; 125(24):244703. PubMed ID: 17199364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026302. PubMed ID: 15783414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media.
    Thullner M; Baveye P
    Biotechnol Bioeng; 2008 Apr; 99(6):1337-51. PubMed ID: 18023059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media.
    Leclaire S; Parmigiani A; Malaspinas O; Chopard B; Latt J
    Phys Rev E; 2017 Mar; 95(3-1):033306. PubMed ID: 28415302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network models of dissolution of porous media.
    Budek A; Szymczak P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056318. PubMed ID: 23214886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation.
    Wu M; Xiao F; Johnson-Paben RM; Retterer ST; Yin X; Neeves KB
    Lab Chip; 2012 Jan; 12(2):253-61. PubMed ID: 22094719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow past superhydrophobic surfaces with cosine variation in local slip length.
    Asmolov ES; Schmieschek S; Harting J; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023005. PubMed ID: 23496608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A level set method for determining critical curvatures for drainage and imbibition.
    Prodanović M; Bryant SL
    J Colloid Interface Sci; 2006 Dec; 304(2):442-58. PubMed ID: 17027812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.