These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23496642)

  • 1. Monodomain shear wave propagation and bidomain shear wave dispersion in an elastic model of cardiac tissue.
    Puwal S; Roth BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):024701. PubMed ID: 23496642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of monodomain and bidomain propagation models for the human heart.
    Potse M; Dubé B; Vinet A; Cardinal R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3895-8. PubMed ID: 17945813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical bidomain model of cardiac tissue.
    Puwal S; Roth BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041904. PubMed ID: 21230310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue.
    Hubbard ML; Henriquez CS
    Am J Physiol Heart Circ Physiol; 2010 Apr; 298(4):H1209-18. PubMed ID: 20097772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation dynamics in anisotropic cardiac tissue via decoupling.
    Clements JC; Nenonen J; Li PK; Horácek BM
    Ann Biomed Eng; 2004 Jul; 32(7):984-90. PubMed ID: 15298436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A perturbation solution of the mechanical bidomain model.
    Punal VM; Roth BJ
    Biomech Model Mechanobiol; 2012 Sep; 11(7):995-1000. PubMed ID: 22200886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidomain ECG simulations using an augmented monodomain model for the cardiac source.
    Bishop MJ; Plank G
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21536529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for shear wave speed estimation in shear wave elastography.
    Engel AJ; Bashford GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2106-14. PubMed ID: 26670851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using the mechanical bidomain model to analyze the biomechanical behavior of cardiomyocytes.
    Roth BJ
    Methods Mol Biol; 2015; 1299():93-102. PubMed ID: 25836577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of some assumptions underpinning the bidomain equations of electrophysiology.
    Whiteley JP
    Math Med Biol; 2020 May; 37(2):262-302. PubMed ID: 31680135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representing cardiac bidomain bath-loading effects by an augmented monodomain approach: application to complex ventricular models.
    Bishop MJ; Plank G
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1066-75. PubMed ID: 21292591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the computational complexity of the bidomain and the monodomain models of electrophysiology.
    Sundnes J; Nielsen BF; Mardal KA; Cai X; Lines GT; Tveito A
    Ann Biomed Eng; 2006 Jul; 34(7):1088-97. PubMed ID: 16773461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating inductances in tissue-scale models of cardiac electrophysiology.
    Rossi S; Griffith BE
    Chaos; 2017 Sep; 27(9):093926. PubMed ID: 28964127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level.
    Stinstra J; MacLeod R; Henriquez C
    Ann Biomed Eng; 2010 Apr; 38(4):1399-414. PubMed ID: 20049638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation of Multiple Cellular Phenotypes Within Tissue-Level Simulations of Cardiac Electrophysiology.
    Bowler LA; Gavaghan DJ; Mirams GR; Whiteley JP
    Bull Math Biol; 2019 Jan; 81(1):7-38. PubMed ID: 30291590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac propagation simulation.
    Pollard AE; Hooke N; Henriquez CS
    Crit Rev Biomed Eng; 1992; 20(3-4):171-210. PubMed ID: 1478091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry.
    Urban MW; Chen S; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):748-58. PubMed ID: 19406703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mechanical feedback on the stability of cardiac scroll waves: A bidomain electro-mechanical simulation study.
    Colli Franzone P; Pavarino LF; Scacchi S
    Chaos; 2017 Sep; 27(9):093905. PubMed ID: 28964121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.