These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 23496722)

  • 21. Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes.
    Fang DZ; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    J Phys Condens Matter; 2010 Nov; 22(45):454134. PubMed ID: 21339620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron Scattering via Interface Optical Phonons with High Group Velocity in Wurtzite GaN-based Quantum Well Heterostructure.
    Park K; Mohamed A; Dutta M; Stroscio MA; Bayram C
    Sci Rep; 2018 Oct; 8(1):15947. PubMed ID: 30374108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-colour high-speed asynchronous optical sampling based on offset-stabilized Yb:KYW and Ti:sapphire oscillators.
    Krauß N; Schäfer G; Flock J; Kliebisch O; Li C; Barros HG; Heinecke DC; Dekorsy T
    Opt Express; 2015 Jul; 23(14):18288-99. PubMed ID: 26191885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of buckling free ultrathin silicon membranes by direct bonding with thermal difference.
    Delachat F; Constancias C; Fournel F; Morales C; Le Drogoff B; Chaker M; Margot J
    ACS Nano; 2015; 9(4):3654-63. PubMed ID: 25789462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon-mediated lipid raft formation in biological membranes.
    Bolmatov D; Kinnun JJ; Katsaras J; Lavrentovich MO
    Chem Phys Lipids; 2020 Oct; 232():104979. PubMed ID: 32980352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires.
    Ghossoub MG; Valavala KV; Seong M; Azeredo B; Hsu K; Sadhu JS; Singh PK; Sinha S
    Nano Lett; 2013 Apr; 13(4):1564-71. PubMed ID: 23464810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanophononics: phonon engineering in nanostructures and nanodevices.
    Balandin AA
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1015-22. PubMed ID: 16108421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures.
    Mante PA; Huang YR; Yang SC; Liu TM; Maznev AA; Sheu JK; Sun CK
    Ultrasonics; 2015 Feb; 56():52-65. PubMed ID: 25455189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coherent optical phonons of ZnO under near resonant photoexcitation.
    Ishioka K; Petek H; Kaydashev VE; Kaidashev EM; Misochko OV
    J Phys Condens Matter; 2010 Nov; 22(46):465803. PubMed ID: 21403377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theory of nonlinear pulse propagation in silicon-nanocrystal waveguides.
    Rukhlenko ID
    Opt Express; 2013 Feb; 21(3):2832-46. PubMed ID: 23481740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals.
    He B; Zhang C; Zhu W; Li Y; Liu S; Zhu X; Wu X; Wang X; Wen HH; Xiao M
    Sci Rep; 2016 Jul; 6():30487. PubMed ID: 27457385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-equilibrium phonon generation and detection in microstructure devices.
    Hertzberg JB; Otelaja OO; Yoshida NJ; Robinson RD
    Rev Sci Instrum; 2011 Oct; 82(10):104905. PubMed ID: 22047321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical study of electron and acoustic phonon confinement in ultrathin-body germanium-on-insulator nanolayers.
    Poborchii V; Groenen J; Geshev PI; Hattori J; Chang WH; Ishii H; Irisawa T; Maeda T
    Nanoscale; 2021 Jun; 13(21):9686-9697. PubMed ID: 34018526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coherent and incoherent electron-phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction.
    Chatelain RP; Morrison VR; Klarenaar BL; Siwick BJ
    Phys Rev Lett; 2014 Dec; 113(23):235502. PubMed ID: 25526134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A structure-permeability relationship of ultrathin nanoporous silicon membrane: a comparison with the nuclear envelope.
    Kim E; Xiong H; Striemer CC; Fang DZ; Fauchet PM; McGrath JL; Amemiya S
    J Am Chem Soc; 2008 Apr; 130(13):4230-1. PubMed ID: 18324815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coherent gigahertz phonons in Ge₂Sb₂Te₅ phase-change materials.
    Hase M; Fons P; Kolobov AV; Tominaga J
    J Phys Condens Matter; 2015 Dec; 27(48):485402. PubMed ID: 26570991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing gigahertz coherent acoustic phonons in TiO
    Cardozo de Oliveira ER; Xiang C; Esmann M; Lopez Abdala N; Fuertes MC; Bruchhausen A; Pastoriza H; Perrin B; Soler-Illia GJAA; Lanzillotti-Kimura ND
    Photoacoustics; 2023 Apr; 30():100472. PubMed ID: 36950519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards GHz-THz cavity optomechanics in DBR-based semiconductor resonators.
    Lanzillotti-Kimura ND; Fainstein A; Jusserand B
    Ultrasonics; 2015 Feb; 56():80-9. PubMed ID: 24962289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.