BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23496747)

  • 1. Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport.
    Neri I; Kern N; Parmeggiani A
    Phys Rev Lett; 2013 Mar; 110(9):098102. PubMed ID: 23496747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of active motion and advection shapes intracellular cargo transport.
    Khuc Trong P; Guck J; Goldstein RE
    Phys Rev Lett; 2012 Jul; 109(2):028104. PubMed ID: 23030209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generic Transport Mechanisms for Molecular Traffic in Cellular Protrusions.
    Graf IR; Frey E
    Phys Rev Lett; 2017 Mar; 118(12):128101. PubMed ID: 28388182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor protein traffic regulation by supply-demand balance of resources.
    Ciandrini L; Neri I; Walter JC; Dauloudet O; Parmeggiani A
    Phys Biol; 2014 Sep; 11(5):056006. PubMed ID: 25204752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice-gas model for active vesicle transport by molecular motors with opposite polarities.
    Muhuri S; Pagonabarraga I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021925. PubMed ID: 20866855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidirectional transport in a multispecies totally asymmetric exclusion-process model.
    Muhuri S; Shagolsem L; Rao M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031921. PubMed ID: 22060417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport dynamics of molecular motors that switch between an active and inactive state.
    Pinkoviezky I; Gov NS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022714. PubMed ID: 24032871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottleneck-induced transitions in a minimal model for intracellular transport.
    Pierobon P; Mobilia M; Kouyos R; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031906. PubMed ID: 17025666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous intracellular transport phases depend on cytoskeletal network features.
    Maelfeyt B; Tabei SMA; Gopinathan A
    Phys Rev E; 2019 Jun; 99(6-1):062404. PubMed ID: 31330659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First passage of molecular motors on networks of cytoskeletal filaments.
    Mlynarczyk PJ; Abel SM
    Phys Rev E; 2019 Feb; 99(2-1):022406. PubMed ID: 30934265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active random forces can drive differential cellular positioning and enhance motor-driven transport.
    Wolgemuth CW; Sun SX
    Mol Biol Cell; 2020 Sep; 31(20):2283-2288. PubMed ID: 32726176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Length regulation of active biopolymers by molecular motors.
    Johann D; Erlenkämper C; Kruse K
    Phys Rev Lett; 2012 Jun; 108(25):258103. PubMed ID: 23004664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traffic of cytoskeletal motors with disordered attachment rates.
    Grzeschik H; Harris RJ; Santen L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031929. PubMed ID: 20365792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of explicit and mean-field models of cytoskeletal filaments with crosslinking motors.
    Lamson AR; Moore JM; Fang F; Glaser MA; Shelley MJ; Betterton MD
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):45. PubMed ID: 33779863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of network junctions for the totally asymmetric simple exclusion process.
    Raguin A; Parmeggiani A; Kern N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042104. PubMed ID: 24229113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the chemomechanical stepping cycle on the traffic of molecular motors.
    Klumpp S; Chai Y; Lipowsky R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041909. PubMed ID: 18999457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Totally asymmetric simple exclusion process simulations of molecular motor transport on random networks with asymmetric exit rates.
    Denisov DV; Miedema DM; Nienhuis B; Schall P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052714. PubMed ID: 26651730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Totally asymmetric simple exclusion process on networks.
    Neri I; Kern N; Parmeggiani A
    Phys Rev Lett; 2011 Aug; 107(6):068702. PubMed ID: 21902376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding totally asymmetric simple-exclusion-process transport on networks: generic analysis via effective rates and explicit vertices.
    Embley B; Parmeggiani A; Kern N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041128. PubMed ID: 19905294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein fluxes along the filopodium as a framework for understanding the growth-retraction dynamics: the interplay between diffusion and active transport.
    Zhuravlev PI; Papoian GA
    Cell Adh Migr; 2011; 5(5):448-56. PubMed ID: 21975554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.