These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 23496873)
1. The complete N-terminal extension of heparin cofactor II is required for maximal effectiveness as a thrombin exosite 1 ligand. Boyle AJ; Roddick LA; Bhakta V; Lambourne MD; Junop MS; Liaw PC; Weitz JI; Sheffield WP BMC Biochem; 2013 Mar; 14():6. PubMed ID: 23496873 [TBL] [Abstract][Full Text] [Related]
2. Fusion of the C-terminal triskaidecapeptide of hirudin variant 3 to alpha1-proteinase inhibitor M358R increases the serpin-mediated rate of thrombin inhibition. Roddick LA; Bhakta V; Sheffield WP BMC Biochem; 2013 Nov; 14():31. PubMed ID: 24215622 [TBL] [Abstract][Full Text] [Related]
3. Role of thrombin anion-binding exosite-I in the formation of thrombin-serpin complexes. Myles T; Church FC; Whinna HC; Monard D; Stone SR J Biol Chem; 1998 Nov; 273(47):31203-8. PubMed ID: 9813026 [TBL] [Abstract][Full Text] [Related]
4. The N-terminal acidic domain of heparin cofactor II mediates the inhibition of alpha-thrombin in the presence of glycosaminoglycans. Van Deerlin VM; Tollefsen DM J Biol Chem; 1991 Oct; 266(30):20223-31. PubMed ID: 1939083 [TBL] [Abstract][Full Text] [Related]
5. The transferable tail: fusion of the N-terminal acidic extension of heparin cofactor II to alpha1-proteinase inhibitor M358R specifically increases the rate of thrombin inhibition. Sutherland JS; Bhakta V; Filion ML; Sheffield WP Biochemistry; 2006 Sep; 45(38):11444-52. PubMed ID: 16981704 [TBL] [Abstract][Full Text] [Related]
6. The preferred pathway of glycosaminoglycan-accelerated inactivation of thrombin by heparin cofactor II. Verhamme IM; Bock PE; Jackson CM J Biol Chem; 2004 Mar; 279(11):9785-95. PubMed ID: 14701814 [TBL] [Abstract][Full Text] [Related]
7. Molecular mapping of the thrombin-heparin cofactor II complex. Fortenberry YM; Whinna HC; Gentry HR; Myles T; Leung LL; Church FC J Biol Chem; 2004 Oct; 279(41):43237-44. PubMed ID: 15292227 [TBL] [Abstract][Full Text] [Related]
9. Role of the proposed serpin-enzyme complex receptor recognition site in binding and internalization of thrombin-heparin cofactor II complexes by hepatocytes. Maekawa H; Tollefsen DM J Biol Chem; 1996 Aug; 271(31):18604-9. PubMed ID: 8702511 [TBL] [Abstract][Full Text] [Related]
10. Fluorescent reporters of thrombin, heparin cofactor II, and heparin binding in a ternary complex. Verhamme IM Anal Biochem; 2012 Feb; 421(2):489-98. PubMed ID: 22206940 [TBL] [Abstract][Full Text] [Related]
11. Glycosaminoglycan-binding properties and kinetic characterization of human heparin cofactor II expressed in Escherichia coli. Sarilla S; Habib SY; Tollefsen DM; Friedman DB; Arnett DR; Verhamme IM Anal Biochem; 2010 Nov; 406(2):166-75. PubMed ID: 20670608 [TBL] [Abstract][Full Text] [Related]
12. Heparin cofactor II is regulated allosterically and not primarily by template effects. Studies with mutant thrombins and glycosaminoglycans. Sheehan JP; Tollefsen DM; Sadler JE J Biol Chem; 1994 Dec; 269(52):32747-51. PubMed ID: 7806495 [TBL] [Abstract][Full Text] [Related]
13. Arginine 200 of heparin cofactor II promotes intramolecular interactions of the acidic domain. Implication for thrombin inhibition. Ciaccia AV; Monroe DM; Church FC J Biol Chem; 1997 May; 272(22):14074-9. PubMed ID: 9162031 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of a thrombin anion-binding exosite-2 mutant by the glycosaminoglycan-dependent serpins protein C inhibitor and heparin cofactor II. Cooper ST; Rezaie AR; Esmon CT; Church FC Thromb Res; 2002 Jul; 107(1-2):67-73. PubMed ID: 12413592 [TBL] [Abstract][Full Text] [Related]
15. Full or partial substitution of the reactive center loop of alpha-1-proteinase inhibitor by that of heparin cofactor II: P1 Arg is required for maximal thrombin inhibition. Filion ML; Bhakta V; Nguyen LH; Liaw PS; Sheffield WP Biochemistry; 2004 Nov; 43(46):14864-72. PubMed ID: 15544357 [TBL] [Abstract][Full Text] [Related]
16. Aspartic acid residues 72 and 75 and tyrosine-sulfate 73 of heparin cofactor II promote intramolecular interactions during glycosaminoglycan binding and thrombin inhibition. Mitchell JW; Church FC J Biol Chem; 2002 May; 277(22):19823-30. PubMed ID: 11856753 [TBL] [Abstract][Full Text] [Related]
17. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Baglin TP; Carrell RW; Church FC; Esmon CT; Huntington JA Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11079-84. PubMed ID: 12169660 [TBL] [Abstract][Full Text] [Related]
18. The interaction of glycosaminoglycans with heparin cofactor II. Tollefsen DM Ann N Y Acad Sci; 1994 Apr; 714():21-31. PubMed ID: 8017769 [TBL] [Abstract][Full Text] [Related]
19. Investigating serpin-enzyme complex formation and stability via single and multiple residue reactive centre loop substitutions in heparin cofactor II. Sutherland JS; Bhakta V; Sheffield WP Thromb Res; 2006; 117(4):447-61. PubMed ID: 15869786 [TBL] [Abstract][Full Text] [Related]
20. Serpin-glycosaminoglycan interactions. Rein CM; Desai UR; Church FC Methods Enzymol; 2011; 501():105-37. PubMed ID: 22078533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]