These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 234970)

  • 41. Paraquat and NADPH-dependent lipid peroxidation in lung microsomes.
    Misra HP; Gorsky LD
    J Biol Chem; 1981 Oct; 256(19):9994-8. PubMed ID: 7275991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Production of 8-hydroxy-2'-deoxguanosine in DNA by microsomal activation of tamoxifen and 4-hydroxytamoxifen.
    Ye Q; Bodell WJ
    Carcinogenesis; 1996 Aug; 17(8):1747-50. PubMed ID: 8761436
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Comparative properties of mitochondrial and microsomal NAD(P)H-dependent lipid peroxidation].
    Osinskaia LF; Chumakov VN
    Biokhimiia; 1980 Feb; 45(2):217-27. PubMed ID: 7388064
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of mansonones on lipid peroxidation, P450 monooxygenase activity, and superoxide anion generation by rat liver microsomes.
    Villamil SF; Dubin M; Galeffi C; Stoppani AO
    Biochem Pharmacol; 1990 Nov; 40(10):2343-51. PubMed ID: 2173928
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increase of lipid peroxidation in rat liver microsomes by dehydroepiandrosterone feeding.
    Swierczynski J; Bannasch P; Mayer D
    Biochim Biophys Acta; 1996 Apr; 1315(3):193-8. PubMed ID: 8611659
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ferritin stimulation of lipid peroxidation by microsomes after chronic ethanol treatment: role of cytochrome P4502E1.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1996 Aug; 332(1):121-7. PubMed ID: 8806716
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH.
    Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1992 Mar; 293(2):274-80. PubMed ID: 1311163
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies on lipid peroxidation using isolated rat liver cells: the role of singlet oxygen in the propagation of lipid peroxidation ADP-Fe3+ or CCl4 induced.
    Chiarpotto E; Albano E; Miglietta A; Poli G; Gravela E; Dianzani MU
    Boll Soc Ital Biol Sper; 1980 Mar; 56(6):615-8. PubMed ID: 7378196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NADPH-dependent inhibition of lipid peroxidation in rat liver microsomes.
    Kagan VE; Serbinova EA; Safadi A; Catudioc JD; Packer L
    Biochem Biophys Res Commun; 1992 Jul; 186(1):74-80. PubMed ID: 1632795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Superoxide dependent lipid peroxidation.
    Tien M; Svingen BA; Aust SD
    Fed Proc; 1981 Feb; 40(2):179-82. PubMed ID: 6257557
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of paraquat on the in vitro activity of cytosol, mitochondrial and microsomal enzyme systems.
    Rossouw DJ; Chase CC; Engelbrecht FM
    S Afr Med J; 1984 Apr; 65(14):555-63. PubMed ID: 6710262
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1989 Dec; 275(2):540-50. PubMed ID: 2556968
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Singlet oxygen as a mediator in the hematoporphyrin-catalyzed photooxidation of NADPH to NADP+ in deuterium oxide.
    Bodaness RS; Chan PC
    J Biol Chem; 1977 Dec; 252(23):8554-60. PubMed ID: 21874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characteristics of the active oxygen in covalent binding of the pesticide methoxychlor to hepatic microsomal proteins.
    Kupfer D; Bulger WH; Nanni FJ
    Biochem Pharmacol; 1986 Aug; 35(16):2775-80. PubMed ID: 3017361
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The stimulatory effects of asbestos on NADPH-dependent lipid peroxidation in rat liver microsomes.
    Fontecave M; Mansuy D; Jaouen M; Pezerat H
    Biochem J; 1987 Jan; 241(2):561-5. PubMed ID: 3036068
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxygen reduction and lipid peroxidation by iron chelates with special reference to ferric nitrilotriacetate.
    Hamazaki S; Okada S; Li JL; Toyokuni S; Midorikawa O
    Arch Biochem Biophys; 1989 Jul; 272(1):10-7. PubMed ID: 2500058
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition of microsomal lipid peroxidation by cytosolic protein in presence of ADP and high concentration of Fe2+.
    Ramasarma T; Muakkassah-Kelly S; Hochstein P
    Biochim Biophys Acta; 1984 Dec; 796(3):243-50. PubMed ID: 6509075
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prelytic damage of red cells in filtrates from peroxidizing microsomes.
    Roders MK; Glende EA; Recknagel RO
    Science; 1977 Jun; 196(4295):1221-2. PubMed ID: 16344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Iron and CYP2E1-dependent oxidative stress and toxicity.
    Cederbaum AI
    Alcohol; 2003 Jun; 30(2):115-20. PubMed ID: 12957295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzymatic generation of alloxan radicals in rat liver microsomes: possible participation of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P-450 reductase.
    Sakurai K; Haga K; Ogiso T
    Chem Pharm Bull (Tokyo); 1992 Feb; 40(2):432-5. PubMed ID: 1606640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.