These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 23497261)
1. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility. Huang Z; Zhang C; Chen S; Ye F; Xing XH Microb Cell Fact; 2013 Mar; 12():25. PubMed ID: 23497261 [TBL] [Abstract][Full Text] [Related]
2. A study on the effects of linker flexibility on acid phosphatase PhoC-GFP fusion protein using a novel linker library. Huang Z; Li G; Zhang C; Xing XH Enzyme Microb Technol; 2016 Feb; 83():1-6. PubMed ID: 26777244 [TBL] [Abstract][Full Text] [Related]
3. Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications. Roca-Pinilla R; Fortuna S; Natalello A; Sánchez-Chardi A; Ami D; Arís A; Garcia-Fruitós E Microb Cell Fact; 2020 Sep; 19(1):175. PubMed ID: 32887587 [TBL] [Abstract][Full Text] [Related]
4. Studies on the Structure and Properties of Membrane Phospholipase A Bakholdina SI; Stenkova AM; Bystritskaya EP; Sidorin EV; Kim NY; Menchinskaya ES; Gorpenchenko TY; Aminin DL; Shved NA; Solov'eva TF Molecules; 2021 Jun; 26(13):. PubMed ID: 34203222 [TBL] [Abstract][Full Text] [Related]
5. A variant of green fluorescent protein exclusively deposited to active intracellular inclusion bodies. Raghunathan G; Munussami G; Moon H; Paik HJ; An SS; Kim YS; Kang S; Lee SG Microb Cell Fact; 2014 May; 13():68. PubMed ID: 24885571 [TBL] [Abstract][Full Text] [Related]
6. Active inclusion body formation using Paenibacillus polymyxa PoxB as a fusion partner in Escherichia coli. Park SY; Park SH; Choi SK Anal Biochem; 2012 Jul; 426(1):63-5. PubMed ID: 22490467 [TBL] [Abstract][Full Text] [Related]
7. Strategy for linker selection to enhance refolding and bioactivity of VAS-TRAIL fusion protein based on inclusion body conformation and activity. Fan J; Huang L; Sun J; Qiu Y; Zhou J; Shen Y J Biotechnol; 2015 Sep; 209():16-22. PubMed ID: 26072465 [TBL] [Abstract][Full Text] [Related]
8. Role of the disaggregase ClpB in processing of proteins aggregated as inclusion bodies. Zblewska K; Krajewska J; Zolkiewski M; Kędzierska-Mieszkowska S Arch Biochem Biophys; 2014 Aug; 555-556():23-7. PubMed ID: 24943258 [TBL] [Abstract][Full Text] [Related]
9. Application of an E. coli signal sequence as a versatile inclusion body tag. Jong WS; Vikström D; Houben D; van den Berg van Saparoea HB; de Gier JW; Luirink J Microb Cell Fact; 2017 Mar; 16(1):50. PubMed ID: 28320377 [TBL] [Abstract][Full Text] [Related]
10. Quality comparison of recombinant soluble proteins and proteins solubilized from bacterial inclusion bodies. López-Cano A; Sicilia P; Gaja C; Arís A; Garcia-Fruitós E N Biotechnol; 2022 Dec; 72():58-63. PubMed ID: 36150649 [TBL] [Abstract][Full Text] [Related]
11. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Wu W; Xing L; Zhou B; Lin Z Microb Cell Fact; 2011 Feb; 10():9. PubMed ID: 21320350 [TBL] [Abstract][Full Text] [Related]
12. Strategic optimization of conditions for the solubilization of GST-tagged amphipathic helix-containing ciliary proteins overexpressed as inclusion bodies in E. coli. Shendge AA; D'Souza JS Microb Cell Fact; 2022 Dec; 21(1):258. PubMed ID: 36510188 [TBL] [Abstract][Full Text] [Related]
13. Quality control of inclusion bodies in Escherichia coli. Jürgen B; Breitenstein A; Urlacher V; Büttner K; Lin H; Hecker M; Schweder T; Neubauer P Microb Cell Fact; 2010 May; 9():41. PubMed ID: 20509924 [TBL] [Abstract][Full Text] [Related]
14. Small surfactant-like peptides can drive soluble proteins into active aggregates. Zhou B; Xing L; Wu W; Zhang XE; Lin Z Microb Cell Fact; 2012 Jan; 11():10. PubMed ID: 22251949 [TBL] [Abstract][Full Text] [Related]
15. Baculoviral polyhedrin as a novel fusion partner for formation of inclusion body in Escherichia coli. Seo JH; Li L; Yeo JS; Cha HJ Biotechnol Bioeng; 2003 Nov; 84(4):467-73. PubMed ID: 14574705 [TBL] [Abstract][Full Text] [Related]
16. Recovery of recombinant Mycobacterium tuberculosis antigens fused with cell wall-anchoring motif (LysM) from inclusion bodies using non-denaturing reagent (N-laurylsarcosine). Mustafa AD; Kalyanasundram J; Sabidi S; Song AA; Abdullah M; Abdul Rahim R; Yusoff K BMC Biotechnol; 2019 May; 19(1):27. PubMed ID: 31088425 [TBL] [Abstract][Full Text] [Related]
17. Tailoring the properties of (catalytically)-active inclusion bodies. Jäger VD; Kloss R; Grünberger A; Seide S; Hahn D; Karmainski T; Piqueray M; Embruch J; Longerich S; Mackfeld U; Jaeger KE; Wiechert W; Pohl M; Krauss U Microb Cell Fact; 2019 Feb; 18(1):33. PubMed ID: 30732596 [TBL] [Abstract][Full Text] [Related]
18. Production of Active Recombinant Hyaluronidase Inclusion Bodies from Schwaighofer A; Ablasser S; Lux L; Kopp J; Herwig C; Spadiut O; Lendl B; Slouka C Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32485932 [TBL] [Abstract][Full Text] [Related]
19. Reassessment of inclusion body-based production as a versatile opportunity for difficult-to-express recombinant proteins. Hoffmann D; Ebrahimi M; Gerlach D; Salzig D; Czermak P Crit Rev Biotechnol; 2018 Aug; 38(5):729-744. PubMed ID: 29124949 [TBL] [Abstract][Full Text] [Related]
20. Construction and comprehensive characterization of an EcLDCc-CatIB set-varying linkers and aggregation inducing tags. Küsters K; Pohl M; Krauss U; Ölçücü G; Albert S; Jaeger KE; Wiechert W; Oldiges M Microb Cell Fact; 2021 Feb; 20(1):49. PubMed ID: 33596923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]