BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23497682)

  • 1. DDIG-in: discriminating between disease-associated and neutral non-frameshifting micro-indels.
    Zhao H; Yang Y; Lin H; Zhang X; Mort M; Cooper DN; Liu Y; Zhou Y
    Genome Biol; 2013 Mar; 14(3):R23. PubMed ID: 23497682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DDIG-in: detecting disease-causing genetic variations due to frameshifting indels and nonsense mutations employing sequence and structural properties at nucleotide and protein levels.
    Folkman L; Yang Y; Li Z; Stantic B; Sattar A; Mort M; Cooper DN; Liu Y; Zhou Y
    Bioinformatics; 2015 May; 31(10):1599-606. PubMed ID: 25573915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the effects of frameshifting indels.
    Hu J; Ng PC
    Genome Biol; 2012 Feb; 13(2):R9. PubMed ID: 22322200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discriminating between deleterious and neutral non-frameshifting indels based on protein interaction networks and hybrid properties.
    Zhang N; Huang T; Cai YD
    Mol Genet Genomics; 2015 Feb; 290(1):343-52. PubMed ID: 25248637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIFT Indel: predictions for the functional effects of amino acid insertions/deletions in proteins.
    Hu J; Ng PC
    PLoS One; 2013; 8(10):e77940. PubMed ID: 24194902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome.
    Pagel KA; Antaki D; Lian A; Mort M; Cooper DN; Sebat J; Iakoucheva LM; Mooney SD; Radivojac P
    PLoS Comput Biol; 2019 Jun; 15(6):e1007112. PubMed ID: 31199787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of human pathogenic micro-insertions and micro-deletions on post-transcriptional regulation.
    Zhang X; Lin H; Zhao H; Hao Y; Mort M; Cooper DN; Zhou Y; Liu Y
    Hum Mol Genet; 2014 Jun; 23(11):3024-34. PubMed ID: 24436305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome.
    Ferlaino M; Rogers MF; Shihab HA; Mort M; Cooper DN; Gaunt TR; Campbell C
    BMC Bioinformatics; 2017 Oct; 18(1):442. PubMed ID: 28985712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pervasive indels and their evolutionary dynamics after the fish-specific genome duplication.
    Guo B; Zou M; Wagner A
    Mol Biol Evol; 2012 Oct; 29(10):3005-22. PubMed ID: 22490820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and characterization of small insertion and deletion genetic variants in modern layer chicken genomes.
    Boschiero C; Gheyas AA; Ralph HK; Eory L; Paton B; Kuo R; Fulton J; Preisinger R; Kaiser P; Burt DW
    BMC Genomics; 2015 Jul; 16():562. PubMed ID: 26227840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the functional effect of amino acid substitutions and indels.
    Choi Y; Sims GE; Murphy S; Miller JR; Chan AP
    PLoS One; 2012; 7(10):e46688. PubMed ID: 23056405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. dbCID: a manually curated resource for exploring the driver indels in human cancer.
    Yue Z; Zhao L; Cheng N; Yan H; Xia J
    Brief Bioinform; 2019 Sep; 20(5):1925-1933. PubMed ID: 30016397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlated occurrence and bypass of frame-shifting insertion-deletions (InDels) to give functional proteins.
    Rockah-Shmuel L; Tóth-Petróczy Á; Sela A; Wurtzel O; Sorek R; Tawfik DS
    PLoS Genet; 2013 Oct; 9(10):e1003882. PubMed ID: 24204297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive study of small non-frameshift insertions/deletions in proteins and prediction of their phenotypic effects by a machine learning method (KD4i).
    Bermejo-Das-Neves C; Nguyen HN; Poch O; Thompson JD
    BMC Bioinformatics; 2014 Apr; 15():111. PubMed ID: 24742296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PredCID: prediction of driver frameshift indels in human cancer.
    Yue Z; Chu X; Xia J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assisting the analysis of insertions and deletions using regional allele frequencies.
    Krishna Murthy SB; Yang S; Bheda S; Tomar N; Li H; Yaghoobi A; Khan A; Kiryluk K; Motelow JE; Ren N; Gharavi AG; Milo Rasouly H
    Funct Integr Genomics; 2024 May; 24(3):104. PubMed ID: 38764005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the Impact of Inframe Insertions and Deletions on Protein Function in Cancer.
    Baeissa HM; Pearl FMG
    J Comput Biol; 2020 May; 27(5):786-795. PubMed ID: 31460787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized detection of insertions/deletions (INDELs) in whole-exome sequencing data.
    Kim BY; Park JH; Jo HY; Koo SK; Park MH
    PLoS One; 2017; 12(8):e0182272. PubMed ID: 28792971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equivalent indels--ambiguous functional classes and redundancy in databases.
    Assmus J; Kleffe J; Schmitt AO; Brockmann GA
    PLoS One; 2013; 8(5):e62803. PubMed ID: 23658777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A probabilistic method for the detection and genotyping of small indels from population-scale sequence data.
    Bansal V; Libiger O
    Bioinformatics; 2011 Aug; 27(15):2047-53. PubMed ID: 21653520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.