These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2349777)

  • 1. Effects of plate luting on cortical vascularity and development of cortical porosity in canine femurs.
    Roush JK; Wilson JW
    Vet Surg; 1990; 19(3):208-14. PubMed ID: 2349777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and biological effects of plate luting.
    Nunamaker DM; Richardson DW; Butterweck DM
    J Orthop Trauma; 1991; 5(2):138-45. PubMed ID: 1861188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact area and static pressure profile at the plate-bone interface in the nonluted and luted bone plate.
    Staller GS; Richardson DW; Nunamaker DM; Provost M
    Vet Surg; 1995; 24(4):299-307. PubMed ID: 7571381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of plate luting, using an in vivo ovine osteotomy model.
    Richardson DW; Nunamaker DM
    Am J Vet Res; 1991 Sep; 52(9):1468-73. PubMed ID: 1952335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical comparison of a 3.5-mm conical coupling plating system and a 3.5-mm locking compression plate applied as plate-rod constructs to an experimentally created fracture gap in femurs of canine cadavers.
    Tremolada G; Lewis DD; Paragnani KL; Conrad BP; Kim SE; Pozzi A
    Am J Vet Res; 2017 Jun; 78(6):712-717. PubMed ID: 28541152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in bone remodeling in the femur after medullary reaming and cemented hip arthroplasty in dogs.
    VanEnkevort BA; Markel MD; Manley PA
    Am J Vet Res; 1999 Aug; 60(8):922-8. PubMed ID: 10451197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular and morphologic changes in canine femora after uncemented hip arthroplasty.
    Bouvy BM; Manley PA
    Vet Surg; 1993; 22(1):18-26. PubMed ID: 8488670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo torsional properties of a 2.5 mm veterinary interlocking nail system in canine femurs. Comparison with a 2.4 mm limited contact bone plate.
    Macedo AS; Moens NM; Runciman J; Gibson TW; Minto BW
    Vet Comp Orthop Traumatol; 2017 Mar; 30(2):118-124. PubMed ID: 28094424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical Comparison of 2 Veterinary Locking Plates to Monocortical Screw/Polymethylmethacrylate Fixation in Canine Cadaveric Cervical Vertebral Column.
    Hettlich BF; Fosgate GT; Litsky AS
    Vet Surg; 2017 Jan; 46(1):95-102. PubMed ID: 27902850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical porosis under plates. Reaction to unloading or to necrosis?
    Uhthoff HK; Boisvert D; Finnegan M
    J Bone Joint Surg Am; 1994 Oct; 76(10):1507-12. PubMed ID: 7929498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the mechanical behaviors of semicontoured, locking plate-rod fixation and anatomically contoured, conventional plate-rod fixation applied to experimentally induced gap fractures in canine femora.
    Goh CS; Santoni BG; Puttlitz CM; Palmer RH
    Am J Vet Res; 2009 Jan; 70(1):23-9. PubMed ID: 19119945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of circumferential bands on cortical vascularity and viability.
    Kirby BM; Wilson JW
    J Orthop Res; 1991 Mar; 9(2):174-9. PubMed ID: 1992066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomechanical comparison of 7-hole 3.5 mm broad and 5-hole 4.5 mm narrow dynamic compression plates.
    Johnston SA; Lancaster RL; Hubbard RP; Probst CW
    Vet Surg; 1991; 20(4):235-9. PubMed ID: 1949559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ex vivo evaluation of the biomechanical effect of varying monocortical screw numbers on a plate-rod canine femoral gap model.
    Delisser PJ; McCombe GP; Trask RS; Etches JA; German AJ; Holden SL; Wallace AM; Burton NJ
    Vet Comp Orthop Traumatol; 2013; 26(3):177-85. PubMed ID: 23460373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress shielding reduced by a silicon plate-bone interface. A canine experiment.
    Korvick DL; Newbrey JW; Bagby GW; Pettit GD; Lincoln JD
    Acta Orthop Scand; 1989 Oct; 60(5):611-6. PubMed ID: 2557719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of application of polyvinilidine plates on the dorsal spinous processes of dogs.
    Rischen CG; Wilson JW; Swain CA
    Vet Surg; 1987; 16(4):294-8. PubMed ID: 3507158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.
    Jain R; Podworny N; Hearn T; Anderson GI; Schemitsch EH
    J Orthop Trauma; 1997 Oct; 11(7):490-5. PubMed ID: 9334950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Healing of mandibular body osteotomies after plate and intramedullary pin fixation.
    Roush JK; Wilson JW
    Vet Surg; 1989; 18(3):190-6. PubMed ID: 2773280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of plate design on cortical bone perfusion and fracture healing in canine segmental tibial fractures.
    Jain R; Podworny N; Hupel TM; Weinberg J; Schemitsch EH
    J Orthop Trauma; 1999; 13(3):178-86. PubMed ID: 10206249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro comparison of stiffness of plate fixation of radii from large- and small-breed dogs.
    Gauthier CM; Conrad BP; Lewis DD; Pozzi A
    Am J Vet Res; 2011 Aug; 72(8):1112-7. PubMed ID: 21801070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.