BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23497850)

  • 21. Investigations into the separation behaviour of perfluorinated C8 and undecanoic acid modified silica hydride stationary phases.
    Kulsing C; Yang Y; Sepehrifar R; Lim M; Toppete J; Matyska MT; Pesek JJ; Boysen RI; Hearn MT
    Anal Chim Acta; 2016 Apr; 916():102-11. PubMed ID: 27016444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of water on the retention on diol and amide columns in hydrophilic interaction liquid chromatography.
    Jandera P; Janás P; Škeříková V; Urban J
    J Sep Sci; 2017 Apr; 40(7):1434-1448. PubMed ID: 28133899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zwitterionic silica-based monolithic capillary columns for isocratic and gradient hydrophilic interaction liquid chromatography.
    Moravcová D; Planeta J; Kahle V; Roth M
    J Chromatogr A; 2012 Dec; 1270():178-85. PubMed ID: 23201004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A New Definition of the Stationary Phase Volume in Mixed-Mode Chromatographic Columns in Hydrophilic Liquid Chromatography.
    Jandera P; Hájek T
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reequilibration time of superficially porous silica based columns in gradient elution reversed phase liquid chromatography.
    VanMiddlesworth BJ; Dorsey JG
    J Chromatogr A; 2011 Oct; 1218(40):7158-65. PubMed ID: 21893317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water uptake on polar stationary phases under conditions for hydrophilic interaction chromatography and its relation to solute retention.
    Dinh NP; Jonsson T; Irgum K
    J Chromatogr A; 2013 Dec; 1320():33-47. PubMed ID: 24200388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings.
    Bicker W; Wu J; Lämmerhofer M; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of the surface coverage of endcapped C18-silica on the excess adsorption isotherms of commonly used organic solvents from water in reversed phase liquid chromatography.
    Gritti F; Kazakevich YV; Guiochon G
    J Chromatogr A; 2007 Oct; 1169(1-2):111-24. PubMed ID: 17875311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Band broadening along gradient reversed phase columns: a potential gain in resolution factor.
    Gritti F; Guiochon G
    J Chromatogr A; 2014 May; 1342():24-9. PubMed ID: 24735602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Evaluation of the retention properties of two cyclodextrin stationary phases with different spacers].
    Zhao Y; Guo Z; Xue X; Liang X
    Se Pu; 2011 Sep; 29(9):885-9. PubMed ID: 22233077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.
    Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R
    Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aqueous normal-phase retention of nucleotides on silica hydride columns.
    Pesek JJ; Matyska MT; Hearn MT; Boysen RI
    J Chromatogr A; 2009 Feb; 1216(7):1140-6. PubMed ID: 19135674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Retention Models on Core-Shell Columns.
    Jandera P; Hájek T; Růžičková M
    J AOAC Int; 2017 Nov; 100(6):1636-1646. PubMed ID: 28707622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relevance of pi-pi and dipole-dipole interactions for retention on cyano and phenyl columns in reversed-phase liquid chromatography.
    Croes K; Steffens A; Marchand DH; Snyder LR
    J Chromatogr A; 2005 Dec; 1098(1-2):123-30. PubMed ID: 16314168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 μm porous and 2.7 μm fused-core silica particles.
    Vaast A; Broeckhoven K; Dolman S; Desmet G; Eeltink S
    J Chromatogr A; 2012 Mar; 1228():270-5. PubMed ID: 21855077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of overloaded gradient elution of nociceptin/orphanin FQ in reversed-phase liquid chromatography.
    Marchetti N; Dondi F; Felinger A; Guerrini R; Salvadori S; Cavazzini A
    J Chromatogr A; 2005 Jun; 1079(1-2):162-72. PubMed ID: 16038302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polar silica-based stationary phases. Part I - Singly and doubly layered sorbents consisting of TRIS-silica and chondroitin sulfate A-TRIS-silica for hydrophilic interaction liquid chromatography.
    Rathnasekara R; El Rassi Z
    Electrophoresis; 2017 Jun; 38(12):1582-1591. PubMed ID: 28247915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficiency of the same neat silica column in hydrophilic interaction chromatography and per aqueous liquid chromatography.
    Gritti F; Dos Santos Pereira A; Sandra P; Guiochon G
    J Chromatogr A; 2010 Jan; 1217(5):683-8. PubMed ID: 20044093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrophilic interaction liquid chromatography columns classification by effect of solvation and chemometric methods.
    Noga S; Bocian S; Buszewski B
    J Chromatogr A; 2013 Feb; 1278():89-97. PubMed ID: 23351397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of the zeta potentials and ionic descriptors of a silica hydride stationary phase with mobile phases of different pH and ionic strength.
    Kulsing C; Yang Y; Matyska MT; Pesek JJ; Boysen RI; Hearn MT
    Anal Chim Acta; 2015 Feb; 859():79-86. PubMed ID: 25622609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.