These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 23497976)

  • 41. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI.
    Ma J; He C; He D; Zhang C; Waite TD
    Water Res; 2018 Nov; 144():296-303. PubMed ID: 30053621
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy Efficiency of Electro-Driven Brackish Water Desalination: Electrodialysis Significantly Outperforms Membrane Capacitive Deionization.
    Patel SK; Qin M; Walker WS; Elimelech M
    Environ Sci Technol; 2020 Mar; 54(6):3663-3677. PubMed ID: 32084313
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Denitrification enhancement by electro-adsorption/reduction in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) with copper electrode.
    Chen L; He F; Li F
    Chemosphere; 2022 Mar; 291(Pt 1):132732. PubMed ID: 34743794
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In situ potential measurement in a flow-electrode CDI for energy consumption estimation and system optimization.
    Luo L; He Q; Ma Z; Yi D; Chen Y; Ma J
    Water Res; 2021 Sep; 203():117522. PubMed ID: 34384947
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization.
    Kim YJ; Choi JH
    Water Res; 2012 Nov; 46(18):6033-9. PubMed ID: 22980574
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of natural organic matter on membrane capacitive deionization performance.
    Shim J; Yoon N; Park S; Park J; Son M; Jeong K; Cho KH
    Chemosphere; 2021 Feb; 264(Pt 2):128519. PubMed ID: 33065317
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of pore structure on the high-performance capacitive deionization using chemically activated carbon nanofibers.
    Im JS; Kim JG; Lee YS
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2268-73. PubMed ID: 24745222
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders.
    Kim M; Cerro MD; Hand S; Cusick RD
    Water Res; 2019 Jan; 148():388-397. PubMed ID: 30399553
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of Activated Carbon Decorated with ZnO Nanorod-Based Electrodes for Desalination of Brackish Water Using Capacitive Deionization Technology.
    Martinez J; Colán M; Castillón R; Ramos PG; Paria R; Sánchez L; Rodríguez JM
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674925
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spinel LiMn
    Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Research on treatment of high salt wastewater by the graphite and activated carbon fiber composite electrodes].
    Zhou GZ; Wang ZF; Wang X; Li WQ; Li SX
    Huan Jing Ke Xue; 2014 May; 35(5):1832-7. PubMed ID: 25055674
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content.
    Santoro C; Abad FB; Serov A; Kodali M; Howe KJ; Soavi F; Atanassov P
    Appl Energy; 2017 Dec; 208():25-36. PubMed ID: 29302130
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electron Transfer of Activated Carbon to Anode Excites and Regulates Desalination in Flow Electrode Capacitive Deionization.
    Wang T; Zhang Z; Gu Z; Hu C; Qu J
    Environ Sci Technol; 2023 Feb; 57(6):2566-2574. PubMed ID: 36719078
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.
    Pugazhenthiran N; Sen Gupta S; Prabhath A; Manikandan M; Swathy JR; Raman VK; Pradeep T
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20156-63. PubMed ID: 26305260
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temperature and desorption mode matter in capacitive deionization process for water desalination.
    Huang KZ; Tang HL
    Environ Technol; 2020 Nov; 41(26):3456-3463. PubMed ID: 31018768
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energy recovery in membrane capacitive deionization.
    Długołęcki P; van der Wal A
    Environ Sci Technol; 2013 May; 47(9):4904-10. PubMed ID: 23477563
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface Electrochemistry of Carbon Electrodes and Faradaic Reactions in Capacitive Deionization.
    Kang JS; Kim S; Kang J; Joo H; Jang J; Jo K; Park S; Kim HI; Yoo SJ; Yoon J; Sung YE; Hatton TA
    Environ Sci Technol; 2022 Sep; 56(17):12602-12612. PubMed ID: 35998306
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination.
    Xu L; Mao Y; Zong Y; Peng S; Zhang X; Wu D
    Environ Sci Technol; 2021 Oct; 55(19):13286-13296. PubMed ID: 34529405
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unravelling pH Changes in Electrochemical Desalination with Capacitive Deionization.
    Arulrajan AC; Dykstra JE; van der Wal A; Porada S
    Environ Sci Technol; 2021 Oct; 55(20):14165-14172. PubMed ID: 34586796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.