These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 23498215)
1. Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Favi PM; Benson RS; Neilsen NR; Hammonds RL; Bates CC; Stephens CP; Dhar MS Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):1935-44. PubMed ID: 23498215 [TBL] [Abstract][Full Text] [Related]
2. Osteogenic differentiation and ectopic bone formation of canine bone marrow-derived mesenchymal stem cells in injectable thermo-responsive polymer hydrogel. Liao HT; Chen CT; Chen JP Tissue Eng Part C Methods; 2011 Nov; 17(11):1139-49. PubMed ID: 21870942 [TBL] [Abstract][Full Text] [Related]
3. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. Igwe JC; Mikael PE; Nukavarapu SP J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304 [TBL] [Abstract][Full Text] [Related]
4. Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Rodrigues MT; Lee SJ; Gomes ME; Reis RL; Atala A; Yoo JJ Acta Biomater; 2012 Jul; 8(7):2795-806. PubMed ID: 22510402 [TBL] [Abstract][Full Text] [Related]
5. An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. Zhang L; Yuan T; Guo L; Zhang X J Biomed Mater Res A; 2012 Oct; 100(10):2717-25. PubMed ID: 22623365 [TBL] [Abstract][Full Text] [Related]
6. Macrochanneled bioactive ceramic scaffolds in combination with collagen hydrogel: a new tool for bone tissue engineering. Yu HS; Jin GZ; Won JE; Wall I; Kim HW J Biomed Mater Res A; 2012 Sep; 100(9):2431-40. PubMed ID: 22566478 [TBL] [Abstract][Full Text] [Related]
7. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related]
8. The effect of two- and three-dimensional cell culture on the chondrogenic potential of human adipose-derived mesenchymal stem cells after subcutaneous transplantation with an injectable hydrogel. Merceron C; Portron S; Masson M; Lesoeur J; Fellah BH; Gauthier O; Geffroy O; Weiss P; Guicheux J; Vinatier C Cell Transplant; 2011; 20(10):1575-88. PubMed ID: 21294960 [TBL] [Abstract][Full Text] [Related]
9. Poly(L-lactide-co-glycolide) scaffolds coated with collagen and glycosaminoglycans: impact on proliferation and osteogenic differentiation of human mesenchymal stem cells. Wojak-Cwik IM; Hintze V; Schnabelrauch M; Moeller S; Dobrzynski P; Pamula E; Scharnweber D J Biomed Mater Res A; 2013 Nov; 101(11):3109-22. PubMed ID: 23526792 [TBL] [Abstract][Full Text] [Related]
10. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Wang C; Lin K; Chang J; Sun J Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715 [TBL] [Abstract][Full Text] [Related]
11. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Fang B; Wan YZ; Tang TT; Gao C; Dai KR Tissue Eng Part A; 2009 May; 15(5):1091-8. PubMed ID: 19196148 [TBL] [Abstract][Full Text] [Related]
12. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis. Gandhimathi C; Venugopal J; Ravichandran R; Sundarrajan S; Suganya S; Ramakrishna S Macromol Biosci; 2013 Jun; 13(6):696-706. PubMed ID: 23529905 [TBL] [Abstract][Full Text] [Related]
13. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
14. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Naderi-Meshkin H; Andreas K; Matin MM; Sittinger M; Bidkhori HR; Ahmadiankia N; Bahrami AR; Ringe J Cell Biol Int; 2014 Jan; 38(1):72-84. PubMed ID: 24108671 [TBL] [Abstract][Full Text] [Related]
15. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds. Rai B; Lin JL; Lim ZX; Guldberg RE; Hutmacher DW; Cool SM Biomaterials; 2010 Nov; 31(31):7960-70. PubMed ID: 20688388 [TBL] [Abstract][Full Text] [Related]
16. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold. Yadav V; Sun L; Panilaitis B; Kaplan DL J Tissue Eng Regen Med; 2015 Dec; 9(12):E276-88. PubMed ID: 23315887 [TBL] [Abstract][Full Text] [Related]
17. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Charbord P; Delorme B; Reis RL; Neves NM Biomacromolecules; 2009 Aug; 10(8):2067-73. PubMed ID: 19621927 [TBL] [Abstract][Full Text] [Related]
18. The effects of Ca2SiO4-Ca3(PO4)2 ceramics on adult human mesenchymal stem cell viability, adhesion, proliferation, differentiation and function. De Aza PN; García-Bernal D; Cragnolini F; Velasquez P; Meseguer-Olmo L Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4009-20. PubMed ID: 23910308 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic differentiation of equine cord blood multipotent mesenchymal stromal cells within coralline hydroxyapatite scaffolds in vitro. Figueroa RJ; Koch TG; Betts DH Vet Comp Orthop Traumatol; 2011; 24(5):354-62. PubMed ID: 21792475 [TBL] [Abstract][Full Text] [Related]
20. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]