BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23498228)

  • 1. Biomaterial porosity determined by fractal dimensions, succolarity and lacunarity on microcomputed tomographic images.
    N'Diaye M; Degeratu C; Bouler JM; Chappard D
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2025-30. PubMed ID: 23498228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional arrangement of β-tricalcium phosphate granules evaluated by microcomputed tomography and fractal analysis.
    Ndiaye M; Terranova L; Mallet R; Mabilleau G; Chappard D
    Acta Biomater; 2015 Jan; 11():404-11. PubMed ID: 25242650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity.
    Chappard D; Legrand E; Haettich B; Chalès G; Auvinet B; Eschard JP; Hamelin JP; Baslé MF; Audran M
    J Pathol; 2001 Nov; 195(4):515-21. PubMed ID: 11745685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porosity imaged by a vector projection algorithm correlates with fractal dimension measured on 3D models obtained by microCT.
    Chappard D; Stancu IC
    J Microsc; 2015 Apr; 258(1):24-30. PubMed ID: 25556606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-connected versus interconnected macroporosity in poly(2-hydroxyethyl methacrylate) polymers. An X-ray microtomographic and histomorphometric study.
    Filmon R; Retailleau-Gaborit N; Grizon F; Galloyer M; Cincu C; Basle MF; Chappard D
    J Biomater Sci Polym Ed; 2002; 13(10):1105-17. PubMed ID: 12484487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative characterization of porous commercial and experimental bone graft substitutes with microcomputed tomography.
    Ylä-Soininmäki A; Moritz N; Turco G; Paoletti S; Aro HT
    J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1538-48. PubMed ID: 23744797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational fluid dynamics simulation from microCT stacks of commercial biomaterials usable for bone grafting.
    Chappard D; Kün-Darbois JD; Guillaume B
    Micron; 2020 Jun; 133():102861. PubMed ID: 32146253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Porous Architecture of Stacks of β-TCP Granules Compared with That of Trabecular Bone: A microCT, Vector Analysis, and Compression Study.
    Chappard D; Terranova L; Mallet R; Mercier P
    Front Endocrinol (Lausanne); 2015; 6():161. PubMed ID: 26528240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity.
    Cooper DM; Matyas JR; Katzenberg MA; Hallgrimsson B
    Calcif Tissue Int; 2004 May; 74(5):437-47. PubMed ID: 14961208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography.
    Moore MJ; Jabbari E; Ritman EL; Lu L; Currier BL; Windebank AJ; Yaszemski MJ
    J Biomed Mater Res A; 2004 Nov; 71(2):258-67. PubMed ID: 15376269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems.
    Peña Fernández M; Barber AH; Blunn GW; Tozzi G
    J Microsc; 2018 Dec; 272(3):213-228. PubMed ID: 30047557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering Stomach Myoelectrical Slow Wave Conduction Patterns via Confocal Imaging of Gastric Pacemaker Cells and Fractal Geometry.
    Mah SA; Avci R; Du P; Vanderwinden JM; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3514-3517. PubMed ID: 36085915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore characteristics of bone substitute materials assessed by microcomputed tomography.
    Klein M; Goetz H; Pazen S; Al-Nawas B; Wagner W; Duschner H
    Clin Oral Implants Res; 2009 Jan; 20(1):67-74. PubMed ID: 19126109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and simulated imaging of pseudo-scaffolds to aid characterisation by X-ray micro CT.
    Morris DE; Mather ML; Crowe JA
    Biomaterials; 2009 Sep; 30(25):4233-46. PubMed ID: 19473700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the fractal geometry of DNA by the binary image analysis.
    Cattani C; Pierro G
    Bull Math Biol; 2013 Sep; 75(9):1544-70. PubMed ID: 23760660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging biofilm in porous media using X-ray computed microtomography.
    Davit Y; Iltis G; Debenest G; Veran-Tissoires S; Wildenschild D; Gerino M; Quintard M
    J Microsc; 2011 Apr; 242(1):15-25. PubMed ID: 21118226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of placement angle on the stability of loaded titanium microscrews: a microcomputed tomographic and biomechanical analysis.
    Zhao L; Xu Z; Wei X; Zhao Z; Yang Z; Zhang L; Li J; Tang T
    Am J Orthod Dentofacial Orthop; 2011 May; 139(5):628-35. PubMed ID: 21536206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo.
    Feng B; Jinkang Z; Zhen W; Jianxi L; Jiang C; Jian L; Guolin M; Xin D
    Biomed Mater; 2011 Feb; 6(1):015007. PubMed ID: 21206002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Out-of-plane auxetic nonwoven as a designer meta-biomaterial.
    Rawal A; Sharma S; Singh D; Jangir NK; Saraswat H; Sebők D; Kukovecz A; Hietel D; Dauner M; Onal L
    J Mech Behav Biomed Mater; 2020 Dec; 112():104069. PubMed ID: 32957055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.