BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23498264)

  • 1. Depth-dependent strain fields of articular cartilage under rolling load by the optimized digital image correlation technique.
    Gao LL; Zhang CQ; Yang YB; Shi JP; Jia YW
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2317-22. PubMed ID: 23498264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth and rate dependent mechanical behaviors for articular cartilage: experiments and theoretical predictions.
    Gao LL; Zhang CQ; Gao H; Liu ZD; Xiao PP
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():244-51. PubMed ID: 24656375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study on the Mechanical Properties of Porcine Cartilage with Microdefect under Rolling Load.
    Men YT; Li XM; Chen L; Fu H
    J Healthc Eng; 2017; 2017():2306160. PubMed ID: 29065577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants.
    Neu CP; Hull ML; Walton JH
    J Orthop Res; 2005 Nov; 23(6):1390-8. PubMed ID: 15972257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratcheting behavior of articular cartilage under cyclic unconfined compression.
    Gao LL; Qin XY; Zhang CQ; Gao H; Ge HY; Zhang XZ
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():371-7. PubMed ID: 26354278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Study on the Mechanical Properties of Porcine Cartilage with Microdefect under Rolling Load.
    Men YT; Li XM; Chen L; Fu H
    J Healthc Eng; 2017; 2017():. PubMed ID: 29072832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition.
    Wilson W; Huyghe JM; van Donkelaar CC
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):43-53. PubMed ID: 16710737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in mechanical behaviour of articular cartilage due to changes in depth varying material properties--a nonhomogeneous poroelastic model study.
    Li LP; Shirazi-Adl A; Buschmann MD
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):45-52. PubMed ID: 12186733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-dependent strain of patellofemoral articular cartilage in unconfined compression.
    Erne OK; Reid JB; Ehmke LW; Sommers MB; Madey SM; Bottlang M
    J Biomech; 2005 Apr; 38(4):667-72. PubMed ID: 15713286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI-based technique for determining nonuniform deformations throughout the volume of articular cartilage explants.
    Neu CP; Hull ML; Walton JH; Buonocore MH
    Magn Reson Med; 2005 Feb; 53(2):321-8. PubMed ID: 15678528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression.
    Wang CC; Deng JM; Ateshian GA; Hung CT
    J Biomech Eng; 2002 Oct; 124(5):557-67. PubMed ID: 12405599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Displacement encoding for the measurement of cartilage deformation.
    Neu CP; Walton JH
    Magn Reson Med; 2008 Jan; 59(1):149-55. PubMed ID: 18050342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zonal and directional variations in tensile properties of bovine articular cartilage with special reference to strain rate variation.
    Verteramo A; Seedhom BB
    Biorheology; 2004; 41(3-4):203-13. PubMed ID: 15299253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain distribution of repaired articular cartilage defects by tissue engineering under compression loading.
    Wang S; Bao Y; Guan Y; Zhang C; Liu H; Yang X; Gao L; Guo T; Chen Q
    J Orthop Surg Res; 2018 Jan; 13(1):19. PubMed ID: 29382342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage.
    Schinagl RM; Gurskis D; Chen AC; Sah RL
    J Orthop Res; 1997 Jul; 15(4):499-506. PubMed ID: 9379258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression.
    Shirazi R; Shirazi-Adl A; Hurtig M
    J Biomech; 2008 Dec; 41(16):3340-8. PubMed ID: 19022449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic measurement of depth-dependent transient behaviors of articular cartilage under compression.
    Zheng YP; Niu HJ; Arthur Mak FT; Huang YP
    J Biomech; 2005 Sep; 38(9):1830-7. PubMed ID: 16023470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of lipid-extraction method on the stiffness of articular cartilage.
    Gudimetla P; Crawford R; Oloyede A
    Clin Biomech (Bristol, Avon); 2007 Oct; 22(8):924-31. PubMed ID: 17689159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical responses of normal and delipidized articular cartilage subjected to varying rates of loading.
    Oloyede A; Gudimetla P; Crawford R; Hills BA
    Connect Tissue Res; 2004; 45(2):86-93. PubMed ID: 15763923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Digital speckle correlation method: a technique to evaluate the tensile property of articular cartilage].
    Dai RC; Yao XF; Yuan LQ; Xu MQ; Liao EY; Tan LH
    Zhonghua Yi Xue Za Zhi; 2004 Aug; 84(15):1265-9. PubMed ID: 15387963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.