BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 23498269)

  • 1. The effect of SMAT-induced grain refinement and dislocations on the corrosion behavior of Ti-25Nb-3Mo-3Zr-2Sn alloy.
    Huang R; Han Y
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2353-9. PubMed ID: 23498269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second-phase-dependent grain refinement in Ti-25Nb-3Mo-3Zr-2Sn alloy and its enhanced osteoblast response.
    Huang R; Zhuang H; Han Y
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():144-52. PubMed ID: 24411362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrosion behavior of biomedical Ti-24Nb-4Zr-8Sn alloy in different simulated body solutions.
    Bai Y; Hao YL; Li SJ; Hao YQ; Yang R; Prima F
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2159-67. PubMed ID: 23498244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of grain size in the regulation of osteoblast response to Ti-25Nb-3Mo-3Zr-2Sn alloy.
    Huang R; Lu S; Han Y
    Colloids Surf B Biointerfaces; 2013 Nov; 111():232-41. PubMed ID: 23831591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological fluid.
    Wang Z; Li Y; Huang W; Chen X; He H
    J Mech Behav Biomed Mater; 2016 Oct; 63():361-374. PubMed ID: 27450038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy.
    Yu S; Yu Z; Wang G; Han J; Ma X; Dargusch MS
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):103-15. PubMed ID: 21439798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tribocorrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Ringer's solution.
    Wang Z; Huang W; Li Y; He H; Zhou Y; Zheng Z
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1094-1102. PubMed ID: 28482473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of surface mechanical attrition treatment on biodegradable Mg-1Ca alloy.
    Li N; Li YD; Li YX; Wu YH; Zheng YF; Han Y
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():314-21. PubMed ID: 24411383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of the electrochemical behaviour and biological performance of Ti-25Ta-5Zr alloy by thermo-mechanical processing.
    Cimpean A; Vasilescu E; Drob P; Cinca I; Vasilescu C; Anastasescu M; Mitran V; Drob SI
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():127-42. PubMed ID: 24656361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.
    Wang Z; Huang W; Ma Y
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():211-8. PubMed ID: 25063112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical behavior of (Ti 1-x Nb x)5Si3 nanocrystalline films in simulated physiological media.
    Liu L; Xu J; Munroe P; Xu J; Xie ZH
    Acta Biomater; 2014 Feb; 10(2):1005-13. PubMed ID: 24076074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced in-vitro osteoblastic functions on β-type titanium alloy using surface mechanical attrition treatment.
    Huang R; Zhang L; Huang L; Zhu J
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():688-697. PubMed ID: 30678957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Experimental study on the corrosion behavior of a type of oral near β-type titanium alloys modified with double glow plasma nitriding].
    Wen K; Li F
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2015 Dec; 50(12):751-4. PubMed ID: 26887401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.
    Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application.
    Zhang E; Yang L; Xu J; Chen H
    Acta Biomater; 2010 May; 6(5):1756-62. PubMed ID: 19941979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.
    Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
    Oliveira NT; Guastaldi AC
    Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique.
    Kent D; Wang G; Yu Z; Ma X; Dargusch M
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):405-16. PubMed ID: 21316628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative corrosion study of Ti-Ta alloys for dental applications.
    Mareci D; Chelariu R; Gordin DM; Ungureanu G; Gloriant T
    Acta Biomater; 2009 Nov; 5(9):3625-39. PubMed ID: 19508903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure, mechanical property and corrosion behavior of interpenetrating (HA+β-TCP)/MgCa composite fabricated by suction casting.
    Wang X; Dong LH; Li JT; Li XL; Ma XL; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4266-73. PubMed ID: 23910342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.