These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23498275)

  • 1. The influence of transition metal ions on collagen mineralization.
    Jia M; Hong Y; Duan S; Liu Y; Yuan B; Jiang F
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2399-406. PubMed ID: 23498275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers.
    Li K; Wang J; Liu X; Xiong X; Liu H
    Carbohydr Polym; 2012 Nov; 90(4):1573-81. PubMed ID: 22944418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactivity in in situ hydroxyapatite-polycaprolactone composites.
    Verma D; Katti K; Katti D
    J Biomed Mater Res A; 2006 Sep; 78(4):772-80. PubMed ID: 16739180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical characterization of hydroxyapatite obtained by wet chemistry in the presence of V, Co, and Cu ions.
    Moseke C; Gelinsky M; Groll J; Gbureck U
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1654-61. PubMed ID: 23827620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and in vitro bioactivity of bredigite powders.
    Wu C; Chang J
    J Biomater Appl; 2007 Jan; 21(3):251-63. PubMed ID: 16543286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric field-assisted formation of organically modified hydroxyapatite (ormoHAP) spheres in carboxymethylated gelatin gels.
    Heinemann C; Heinemann S; Kruppke B; Worch H; Thomas J; Wiesmann HP; Hanke T
    Acta Biomater; 2016 Oct; 44():135-43. PubMed ID: 27544814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of calcium hydroxyapatite (Ca-HAp) on cholesterol and cholestanol crystals from a simulated body fluid: A possible insight into the pathological calcifications associated with atherosclerosis.
    Laird DF; Mucalo MR; Yokogawa Y
    J Colloid Interface Sci; 2006 Mar; 295(2):348-63. PubMed ID: 16229855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and spectroscopic investigations of hydroxyapatite using a green chelating agent as template.
    Gopi D; Bhuvaneshwari N; Indira J; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 104():292-9. PubMed ID: 23270888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal synthesis of hydroxyapatite plates prepared using low molecular weight heparin (LMWH).
    Rajeswari A; Kumar VG; Karthick V; Dhas TS; Potluri SL
    Colloids Surf B Biointerfaces; 2013 Nov; 111():764-8. PubMed ID: 23871522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic mineralization of hydroxyapatite crystals on the copolymers of vinylphosphonic acid and 4-vinilyimidazole.
    Dogan O; Oner M
    Langmuir; 2006 Nov; 22(23):9671-5. PubMed ID: 17073495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute.
    Sionkowska A; Kozłowska J
    Int J Biol Macromol; 2010 Nov; 47(4):483-7. PubMed ID: 20637799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers.
    Lin K; Chang J; Cheng R
    Acta Biomater; 2007 Mar; 3(2):271-6. PubMed ID: 17234465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ hydrothermal crystallization of hexagonal hydroxyapatite tubes from yttrium ion-doped hydroxyapatite by the Kirkendall effect.
    Li C; Ge X; Li G; Lu H; Ding R
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():191-5. PubMed ID: 25491819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of modification of calcium hydroxyapatites by trivalent metal ions on the protein adsorption behavior.
    Kandori K; Toshima S; Wakamura M; Fukusumi M; Morisada Y
    J Phys Chem B; 2010 Feb; 114(7):2399-404. PubMed ID: 20121272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The uptake of titanium ions by hydroxyapatite particles-structural changes and possible mechanisms.
    Ribeiro CC; Gibson I; Barbosa MA
    Biomaterials; 2006 Mar; 27(9):1749-61. PubMed ID: 16256192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold.
    Panda NN; Pramanik K; Sukla LB
    Bioprocess Biosyst Eng; 2014 Mar; 37(3):433-40. PubMed ID: 23846299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic hydroxyapatite formation inside agarose gels by integration of electrophoretic and alternate soaking approaches.
    Watanabe J; Akashi M
    J Biomater Sci Polym Ed; 2008; 19(12):1625-35. PubMed ID: 19017475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological structure and characteristics of hydroxyapatite/β-cyclodextrin composite nanoparticles synthesized at different conditions.
    Son KD; Kim YJ
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):499-506. PubMed ID: 25428101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid.
    Ghasemi S; Rahimnejad S; Setayesh SR; Rohani S; Gholami MR
    J Hazard Mater; 2009 Dec; 172(2-3):1573-8. PubMed ID: 19735982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications.
    Gopi D; Nithiya S; Shinyjoy E; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():194-200. PubMed ID: 22446767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.