These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 23498662)

  • 1. DNA methylation and methylcytosine oxidation in cell fate decisions.
    Koh KP; Rao A
    Curr Opin Cell Biol; 2013 Apr; 25(2):152-61. PubMed ID: 23498662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA methylation dynamics in neurogenesis.
    Wang Z; Tang B; He Y; Jin P
    Epigenomics; 2016 Mar; 8(3):401-14. PubMed ID: 26950681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying the epigenome using next generation sequencing.
    Ku CS; Naidoo N; Wu M; Soong R
    J Med Genet; 2011 Nov; 48(11):721-30. PubMed ID: 21825079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin remodeling in plant cell culture: patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions.
    Law RD; Suttle JC
    Plant Physiol Biochem; 2005 Jun; 43(6):527-34. PubMed ID: 15922608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charting oxidized methylcytosines at base resolution.
    Wu H; Zhang Y
    Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting and interpreting DNA methylation marks.
    Ren R; Horton JR; Zhang X; Blumenthal RM; Cheng X
    Curr Opin Struct Biol; 2018 Dec; 53():88-99. PubMed ID: 30031306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA Methylation Analysis.
    Feng L; Lou J
    Methods Mol Biol; 2019; 1894():181-227. PubMed ID: 30547463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5-Hydroxymethylcytosine: generation, fate, and genomic distribution.
    Shen L; Zhang Y
    Curr Opin Cell Biol; 2013 Jun; 25(3):289-96. PubMed ID: 23498661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA cytosine methylation and hydroxymethylation at the borders.
    Ehrlich M; Ehrlich KC
    Epigenomics; 2014; 6(6):563-6. PubMed ID: 25531248
    [No Abstract]   [Full Text] [Related]  

  • 10. Large conserved domains of low DNA methylation maintained by Dnmt3a.
    Jeong M; Sun D; Luo M; Huang Y; Challen GA; Rodriguez B; Zhang X; Chavez L; Wang H; Hannah R; Kim SB; Yang L; Ko M; Chen R; Göttgens B; Lee JS; Gunaratne P; Godley LA; Darlington GJ; Rao A; Li W; Goodell MA
    Nat Genet; 2014 Jan; 46(1):17-23. PubMed ID: 24270360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic distribution and possible functions of DNA hydroxymethylation in the brain.
    Wen L; Tang F
    Genomics; 2014 Nov; 104(5):341-6. PubMed ID: 25205307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants.
    Sadakierska-Chudy A; Kostrzewa RM; Filip M
    Neurotox Res; 2015 Jan; 27(1):84-97. PubMed ID: 25362550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mechanisms of Generation, Recognition, and Erasure of DNA 5-Methylcytosine and Thymine Oxidations.
    Hashimoto H; Zhang X; Vertino PM; Cheng X
    J Biol Chem; 2015 Aug; 290(34):20723-20733. PubMed ID: 26152719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-methylcytosine and its derivatives.
    Yuan BF
    Adv Clin Chem; 2014; 67():151-87. PubMed ID: 25735861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A human tissue map of 5-hydroxymethylcytosines exhibits tissue specificity through gene and enhancer modulation.
    Cui XL; Nie J; Ku J; Dougherty U; West-Szymanski DC; Collin F; Ellison CK; Sieh L; Ning Y; Deng Z; Zhao CWT; Bergamaschi A; Pekow J; Wei J; Beadell AV; Zhang Z; Sharma G; Talwar R; Arensdorf P; Karpus J; Goel A; Bissonnette M; Zhang W; Levy S; He C
    Nat Commun; 2020 Dec; 11(1):6161. PubMed ID: 33268789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos.
    Nakamura T; Liu YJ; Nakashima H; Umehara H; Inoue K; Matoba S; Tachibana M; Ogura A; Shinkai Y; Nakano T
    Nature; 2012 Jun; 486(7403):415-9. PubMed ID: 22722204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosine modifications modulate the chromatin architecture of transcriptional enhancers.
    Mahé EA; Madigou T; Sérandour AA; Bizot M; Avner S; Chalmel F; Palierne G; Métivier R; Salbert G
    Genome Res; 2017 Jun; 27(6):947-958. PubMed ID: 28396520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells.
    Szulwach KE; Li X; Li Y; Song CX; Han JW; Kim S; Namburi S; Hermetz K; Kim JJ; Rudd MK; Yoon YS; Ren B; He C; Jin P
    PLoS Genet; 2011 Jun; 7(6):e1002154. PubMed ID: 21731508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleic acid modifications with epigenetic significance.
    Fu Y; He C
    Curr Opin Chem Biol; 2012 Dec; 16(5-6):516-24. PubMed ID: 23092881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation.
    Wu H; Zhang Y
    Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.