These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 23498859)
1. In the mitochondrial CMSII mutant of Nicotiana sylvestris photosynthetic activity remains higher than in the WT under persisting mild water stress. Rzigui T; De Paepe R; Cornic G; Streb P Plant Sci; 2013 May; 205-206():20-8. PubMed ID: 23498859 [TBL] [Abstract][Full Text] [Related]
2. The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. Priault P; Tcherkez G; Cornic G; De Paepe R; Naik R; Ghashghaie J; Streb P J Exp Bot; 2006; 57(12):3195-207. PubMed ID: 16945981 [TBL] [Abstract][Full Text] [Related]
3. The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance. Priault P; Fresneau C; Noctor G; De Paepe R; Cornic G; Streb P J Exp Bot; 2006; 57(9):2075-85. PubMed ID: 16714313 [TBL] [Abstract][Full Text] [Related]
4. Effects of drought stress and subsequent rewatering on photosynthetic and respiratory pathways in Nicotiana sylvestris wild type and the mitochondrial complex I-deficient CMSII mutant. Galle A; Florez-Sarasa I; Thameur A; de Paepe R; Flexas J; Ribas-Carbo M J Exp Bot; 2010 Mar; 61(3):765-75. PubMed ID: 19933320 [TBL] [Abstract][Full Text] [Related]
5. Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Dutilleul C; Driscoll S; Cornic G; De Paepe R; Foyer CH; Noctor G Plant Physiol; 2003 Jan; 131(1):264-75. PubMed ID: 12529534 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Cornic G; Fresneau C Ann Bot; 2002 Jun; 89 Spec No(7):887-94. PubMed ID: 12102514 [TBL] [Abstract][Full Text] [Related]
7. Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances. Djebbar R; Rzigui T; Pétriacq P; Mauve C; Priault P; Fresneau C; De Paepe M; Florez-Sarasa I; Benhassaine-Kesri G; Streb P; Gakière B; Cornic G; De Paepe R Planta; 2012 Mar; 235(3):603-14. PubMed ID: 22002624 [TBL] [Abstract][Full Text] [Related]
8. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758 [TBL] [Abstract][Full Text] [Related]
9. The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSII during chilling stress. Li M; Ji L; Yang X; Meng Q; Guo S Plant Cell Rep; 2012 Nov; 31(11):1969-79. PubMed ID: 22790321 [TBL] [Abstract][Full Text] [Related]
10. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation. Lautner S; Stummer M; Matyssek R; Fromm J; Grams TE Plant Cell Environ; 2014 Jan; 37(1):254-60. PubMed ID: 23763645 [TBL] [Abstract][Full Text] [Related]
11. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Evans JR; von Caemmerer S Plant Cell Environ; 2013 Apr; 36(4):745-56. PubMed ID: 22882584 [TBL] [Abstract][Full Text] [Related]
12. Integrating transient heterogeneity of non-photochemical quenching in shade-grown heterobaric leaves of avocado (Persea americana L.): responses to CO2 concentration, stomatal occlusion, dehydration and relative humidity. Takayama K; King D; Robinson SA; Osmond B Plant Cell Physiol; 2013 Nov; 54(11):1852-66. PubMed ID: 24078766 [TBL] [Abstract][Full Text] [Related]
14. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. Chastain DR; Snider JL; Collins GD; Perry CD; Whitaker J; Byrd SA J Plant Physiol; 2014 Nov; 171(17):1576-85. PubMed ID: 25151126 [TBL] [Abstract][Full Text] [Related]
15. Photorespiration provides the chance of cyclic electron flow to operate for the redox-regulation of P700 in photosynthetic electron transport system of sunflower leaves. Takagi D; Hashiguchi M; Sejima T; Makino A; Miyake C Photosynth Res; 2016 Sep; 129(3):279-90. PubMed ID: 27116126 [TBL] [Abstract][Full Text] [Related]
16. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures? Leibar U; Aizpurua A; Unamunzaga O; Pascual I; Morales F Photosynth Res; 2015 May; 124(2):199-215. PubMed ID: 25786733 [TBL] [Abstract][Full Text] [Related]
17. Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration. Walker BJ; South PF; Ort DR Photosynth Res; 2016 Jul; 129(1):93-103. PubMed ID: 27251551 [TBL] [Abstract][Full Text] [Related]
18. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. Lawson T; Lefebvre S; Baker NR; Morison JI; Raines CA J Exp Bot; 2008; 59(13):3609-19. PubMed ID: 18836187 [TBL] [Abstract][Full Text] [Related]
19. Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Haupt-Herting S; Fock HP Ann Bot; 2002 Jun; 89 Spec No(7):851-9. PubMed ID: 12102511 [TBL] [Abstract][Full Text] [Related]
20. The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? Galle A; Florez-Sarasa I; Tomas M; Pou A; Medrano H; Ribas-Carbo M; Flexas J J Exp Bot; 2009; 60(8):2379-90. PubMed ID: 19321646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]