These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 23499106)
21. Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds. Qian YF; Zhang KH; Chen F; Ke QF; Mo XM J Biomater Sci Polym Ed; 2011; 22(8):1099-113. PubMed ID: 20615315 [TBL] [Abstract][Full Text] [Related]
22. Comparison of the properties of collagen-chitosan scaffolds after γ-ray irradiation and carbodiimide cross-linking. Chen Z; Du T; Tang X; Liu C; Li R; Xu C; Tian F; Du Z; Wu J J Biomater Sci Polym Ed; 2016 Jul; 27(10):937-53. PubMed ID: 27122297 [TBL] [Abstract][Full Text] [Related]
23. Mechanical characterization of electrospun gelatin scaffolds cross-linked by glucose. Siimon K; Siimon H; Järvekülg M J Mater Sci Mater Med; 2015 Jan; 26(1):5375. PubMed ID: 25578715 [TBL] [Abstract][Full Text] [Related]
24. In vitro investigation on the biodegradability and biocompatibility of genipin cross-linked porcine acellular dermal matrix with intrinsic fluorescence. Qiu J; Li J; Wang G; Zheng L; Ren N; Liu H; Tang W; Jiang H; Wang Y ACS Appl Mater Interfaces; 2013 Jan; 5(2):344-50. PubMed ID: 23245190 [TBL] [Abstract][Full Text] [Related]
25. Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells. Thein-Han WW; Saikhun J; Pholpramoo C; Misra RD; Kitiyanant Y Acta Biomater; 2009 Nov; 5(9):3453-66. PubMed ID: 19460465 [TBL] [Abstract][Full Text] [Related]
26. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. Isikli C; Hasirci V; Hasirci N J Tissue Eng Regen Med; 2012 Feb; 6(2):135-43. PubMed ID: 21351375 [TBL] [Abstract][Full Text] [Related]
27. Physicochemical and biological activity study of genipin-crosslinked chitosan scaffolds prepared by using supercritical carbon dioxide for tissue engineering applications. Kumari R; Dutta PK Int J Biol Macromol; 2010 Mar; 46(2):261-6. PubMed ID: 20035784 [TBL] [Abstract][Full Text] [Related]
28. Development of decellularized meniscus extracellular matrix and gelatin/chitosan scaffolds for meniscus tissue engineering. Yu Z; Lili J; Tiezheng Z; Li S; Jianzhuang W; Haichao D; Kedong S; Tianqing L Biomed Mater Eng; 2019; 30(2):125-132. PubMed ID: 30741661 [TBL] [Abstract][Full Text] [Related]
29. Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin. Berillo D; Elowsson L; Kirsebom H Macromol Biosci; 2012 Aug; 12(8):1090-9. PubMed ID: 22674878 [TBL] [Abstract][Full Text] [Related]
30. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Ji C; Annabi N; Khademhosseini A; Dehghani F Acta Biomater; 2011 Apr; 7(4):1653-64. PubMed ID: 21130905 [TBL] [Abstract][Full Text] [Related]
31. Genipin crosslinked gelatin nanofibers for tissue engineering. Su Y; Mo X J Control Release; 2011 Nov; 152 Suppl 1():e230-2. PubMed ID: 22195876 [No Abstract] [Full Text] [Related]
32. Structure and properties of bilayer chitosan-gelatin scaffolds. Mao JS; Zhao LG; Yin YJ; Yao KD Biomaterials; 2003 Mar; 24(6):1067-74. PubMed ID: 12504529 [TBL] [Abstract][Full Text] [Related]
33. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering. Khan MN; Islam JM; Khan MA J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185 [TBL] [Abstract][Full Text] [Related]
34. Rheological, microstructural, and in vitro characterization of hybrid chitosan-polylactic acid/hydroxyapatite composites. Araújo AB; Lemos AF; Ferreira JM J Biomed Mater Res A; 2009 Mar; 88(4):916-22. PubMed ID: 18384164 [TBL] [Abstract][Full Text] [Related]
35. Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility. Norowski PA; Fujiwara T; Clem WC; Adatrow PC; Eckstein EC; Haggard WO; Bumgardner JD J Tissue Eng Regen Med; 2015 May; 9(5):577-83. PubMed ID: 23166109 [TBL] [Abstract][Full Text] [Related]
36. Comparison of two proanthocyanidin cross-linked recombinant human collagen-peptide (RHC) - chitosan scaffolds. Zhang J; Deng A; Zhou A; Yang Y; Gao L; Zhong Z; Yang S J Biomater Sci Polym Ed; 2015; 26(10):585-99. PubMed ID: 26053645 [TBL] [Abstract][Full Text] [Related]
37. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Kavya KC; Jayakumar R; Nair S; Chennazhi KP Int J Biol Macromol; 2013 Aug; 59():255-63. PubMed ID: 23591473 [TBL] [Abstract][Full Text] [Related]
38. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization. Liu IH; Chang SH; Lin HY Biomed Mater; 2015 May; 10(3):035004. PubMed ID: 25970802 [TBL] [Abstract][Full Text] [Related]
39. [Biodegradablescaffolds based on chitosan: Preparation, properties, and use for the cultivation of animal cells]. Kil’deeva NR; Kasatkina MA; Drozdova MG; Demina TS; Uspenskii SA; Mikhailov SN; Markvicheva EA Prikl Biokhim Mikrobiol; 2016; 52(5):504-12. PubMed ID: 29513416 [TBL] [Abstract][Full Text] [Related]
40. Engineered tubular structures based on chitosan for tissue engineering applications. Silva JM; Rodrigues LC; Silva SS; Reis RL; Duarte ARC J Biomater Appl; 2018 Feb; 32(7):841-852. PubMed ID: 29187013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]