BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23499166)

  • 1. Spirostanol saponins and esculin from Rusci rhizoma reduce the thrombin-induced hyperpermeability of endothelial cells.
    Barbič M; Willer EA; Rothenhöfer M; Heilmann J; Fürst R; Jürgenliemk G
    Phytochemistry; 2013 Jun; 90():106-13. PubMed ID: 23499166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimycotic spirostanol saponins from Solanum hispidum leaves and their structure-activity relationships.
    González M; Zamilpa A; Marquina S; Navarro V; Alvarez L
    J Nat Prod; 2004 Jun; 67(6):938-41. PubMed ID: 15217270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxic steroidal saponins from the rhizomes of Asparagus oligoclonos.
    Kim GS; Kim HT; Seong JD; Oh SR; Lee CO; Bang JK; Seong NS; Song KS
    J Nat Prod; 2005 May; 68(5):766-8. PubMed ID: 15921426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruscus Genus: A Rich Source of Bioactive Steroidal Saponins.
    Masullo M; Pizza C; Piacente S
    Planta Med; 2016 Dec; 82(18):1513-1524. PubMed ID: 27825178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyhydroxylated spirostanol saponins from the tubers of Dioscorea polygonoides.
    Osorio JN; Mosquera Martinez OM; Correa Navarro YM; Watanabe K; Sakagami H; Mimaki Y
    J Nat Prod; 2005 Jul; 68(7):1116-20. PubMed ID: 16038563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-Inflammatory Spirostanol and Furostanol Saponins from Solanum macaonense.
    Lee CL; Hwang TL; Yang JC; Cheng HT; He WJ; Yen CT; Kuo CL; Chen CJ; Chang WY; Wu YC
    J Nat Prod; 2014 Aug; 77(8):1770-83. PubMed ID: 25036668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steroidal glycosides from Agave utahensis and their cytotoxic activity.
    Yokosuka A; Jitsuno M; Yui S; Yamazaki M; Mimaki Y
    J Nat Prod; 2009 Aug; 72(8):1399-404. PubMed ID: 19645463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New steroidal saponins and sterol glycosides from Paris polyphylla var. yunnanensis.
    Wu X; Wang L; Wang GC; Wang H; Dai Y; Ye WC; Li YL
    Planta Med; 2012 Oct; 78(15):1667-75. PubMed ID: 22923196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steroidal saponins from the leaves of Agave macroacantha.
    Eskander J; Lavaud C; Harakat D
    Fitoterapia; 2010 Jul; 81(5):371-4. PubMed ID: 19909800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three spirostanol saponins and a flavane-O-glucoside from the fresh rhizomes of Tupistra chinensis.
    Xiao YH; Yin HL; Chen L; Tian Y; Liu SJ; Zhang GJ; Chen HW; Jin H; Li B; Dong JX
    Fitoterapia; 2015 Apr; 102():102-8. PubMed ID: 25707589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spirostanol saponins from Tacca vietnamensis and their anti-inflammatory activity.
    Yen PH; Chi VT; Kiem PV; Tai BH; Quang TH; Nhiem NX; Anh Hle T; Ban NK; Thanh BV; Minh CV; Park S; Kim SH
    Bioorg Med Chem Lett; 2016 Aug; 26(15):3780-4. PubMed ID: 27287369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spirostanol saponins derivated from the seeds of Trigonella foenum-graecum by β-glucosidase hydrolysis and their inhibitory effects on rat platelet aggregation.
    Pang X; Cong Y; Yu HS; Kang LP; Feng B; Han BX; Zhao Y; Xiong CQ; Tan DW; Song W; Liu B; Cong YW; Ma BP
    Planta Med; 2012 Feb; 78(3):276-85. PubMed ID: 22127545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tupichinins B-D, three new spirostanol saponins from Tupistra chinensis rhizomes.
    Wei LM; Wu YC; Chen CC; Hsieh PW; Pan WB
    Nat Prod Res; 2014; 28(2):74-80. PubMed ID: 24274899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bufadienolide and spirostanol glycosides from the rhizomes of helleborusorientalis.
    Watanabe K; Mimaki Y; Sakagami H; Sashida Y
    J Nat Prod; 2003 Feb; 66(2):236-41. PubMed ID: 12608856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ypsilandrosides C-G, five new spirostanol saponins from Ypsilandra thibetica.
    Xie BB; Liu HY; Ni W; Chen CX
    Steroids; 2009 Nov; 74(12):950-5. PubMed ID: 19595698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifungal Saponins from the Maya Medicinal Plant Cestrum schlechtendahlii G. Don (Solanaceae).
    Ta CA; Guerrero-Analco JA; Roberts E; Liu R; Mogg CD; Saleem A; Otárola-Rojas M; Poveda L; Sanchez-Vindas P; Cal V; Caal F; Subramaniam R; Smith ML; Arnason JT
    Phytother Res; 2016 Mar; 30(3):439-46. PubMed ID: 26666462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solanum incanum and S. heteracanthum as sources of biologically active steroid glycosides: confirmation of their synonymy.
    Manase MJ; Mitaine-Offer AC; Pertuit D; Miyamoto T; Tanaka C; Delemasure S; Dutartre P; Mirjolet JF; Duchamp O; Lacaille-Dubois MA
    Fitoterapia; 2012 Sep; 83(6):1115-9. PubMed ID: 22579841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel steroidal components from the underground parts of Ruscus aculeatus L.
    De Marino S; Festa C; Zollo F; Iorizzi M
    Molecules; 2012 Nov; 17(12):14002-14. PubMed ID: 23183890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steroidal saponins from the rhizome of Paris polyphylla and their cytotoxic activities.
    Zhao Y; Kang LP; Liu YX; Liang YG; Tan DW; Yu ZY; Cong YW; Ma BP
    Planta Med; 2009 Mar; 75(4):356-63. PubMed ID: 19085682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo anticancer activity of steroid saponins of Paris polyphylla var. yunnanensis.
    Yan LL; Zhang YJ; Gao WY; Man SL; Wang Y
    Exp Oncol; 2009 Mar; 31(1):27-32. PubMed ID: 19300413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.