These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1154 related articles for article (PubMed ID: 23499792)
1. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Yan CG; Cheung B; Kelly C; Colcombe S; Craddock RC; Di Martino A; Li Q; Zuo XN; Castellanos FX; Milham MP Neuroimage; 2013 Aug; 76():183-201. PubMed ID: 23499792 [TBL] [Abstract][Full Text] [Related]
2. Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Yan CG; Craddock RC; Zuo XN; Zang YF; Milham MP Neuroimage; 2013 Oct; 80():246-62. PubMed ID: 23631983 [TBL] [Abstract][Full Text] [Related]
3. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data. Lanka P; Deshpande G Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966 [TBL] [Abstract][Full Text] [Related]
4. Test-retest reliability of graph metrics in high-resolution functional connectomics: a resting-state functional MRI study. Du HX; Liao XH; Lin QX; Li GS; Chi YZ; Liu X; Yang HZ; Wang Y; Xia MR CNS Neurosci Ther; 2015 Oct; 21(10):802-16. PubMed ID: 26212146 [TBL] [Abstract][Full Text] [Related]
5. Functional brain hubs and their test-retest reliability: a multiband resting-state functional MRI study. Liao XH; Xia MR; Xu T; Dai ZJ; Cao XY; Niu HJ; Zuo XN; Zang YF; He Y Neuroimage; 2013 Dec; 83():969-82. PubMed ID: 23899725 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990 [TBL] [Abstract][Full Text] [Related]
7. Robust Correlation for Link Definition in Resting-State fMRI Brain Networks Can Reduce Motion-Related Artifacts. Burkhardt M; Thiel CM; Gießing C Brain Connect; 2022 Feb; 12(1):18-25. PubMed ID: 34269612 [No Abstract] [Full Text] [Related]
9. Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem. Aquino KM; Fulcher BD; Parkes L; Sabaroedin K; Fornito A Neuroimage; 2020 May; 212():116614. PubMed ID: 32084564 [TBL] [Abstract][Full Text] [Related]
10. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Parkes L; Fulcher B; Yücel M; Fornito A Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773 [TBL] [Abstract][Full Text] [Related]
11. Transient Arousal Modulations Contribute to Resting-State Functional Connectivity Changes Associated with Head Motion Parameters. Gu Y; Han F; Sainburg LE; Liu X Cereb Cortex; 2020 Sep; 30(10):5242-5256. PubMed ID: 32406488 [TBL] [Abstract][Full Text] [Related]
12. Real-time and Recursive Estimators for Functional MRI Quality Assessment. Davydov N; Peek L; Auer T; Prilepin E; Gninenko N; Van De Ville D; Nikonorov A; Koush Y Neuroinformatics; 2022 Oct; 20(4):897-917. PubMed ID: 35297018 [TBL] [Abstract][Full Text] [Related]
13. Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data. Power JD; Plitt M; Gotts SJ; Kundu P; Voon V; Bandettini PA; Martin A Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2105-E2114. PubMed ID: 29440410 [TBL] [Abstract][Full Text] [Related]
14. Pitfalls and Recommended Strategies and Metrics for Suppressing Motion Artifacts in Functional MRI. Raval V; Nguyen KP; Pinho M; Dewey RB; Trivedi M; Montillo AA Neuroinformatics; 2022 Oct; 20(4):879-896. PubMed ID: 35291020 [TBL] [Abstract][Full Text] [Related]
15. Filtering respiratory motion artifact from resting state fMRI data in infant and toddler populations. Kaplan S; Meyer D; Miranda-Dominguez O; Perrone A; Earl E; Alexopoulos D; Barch DM; Day TKM; Dust J; Eggebrecht AT; Feczko E; Kardan O; Kenley JK; Rogers CE; Wheelock MD; Yacoub E; Rosenberg M; Elison JT; Fair DA; Smyser CD Neuroimage; 2022 Feb; 247():118838. PubMed ID: 34942363 [TBL] [Abstract][Full Text] [Related]
16. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Patel AX; Kundu P; Rubinov M; Jones PS; Vértes PE; Ersche KD; Suckling J; Bullmore ET Neuroimage; 2014 Jul; 95(100):287-304. PubMed ID: 24657353 [TBL] [Abstract][Full Text] [Related]
17. Head Motion and Correction Methods in Resting-state Functional MRI. Goto M; Abe O; Miyati T; Yamasue H; Gomi T; Takeda T Magn Reson Med Sci; 2016; 15(2):178-86. PubMed ID: 26701695 [TBL] [Abstract][Full Text] [Related]
18. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines. Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215 [TBL] [Abstract][Full Text] [Related]
19. Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement. Fellner MC; Volberg G; Mullinger KJ; Goldhacker M; Wimber M; Greenlee MW; Hanslmayr S Neuroimage; 2016 Jun; 133():354-366. PubMed ID: 27012498 [TBL] [Abstract][Full Text] [Related]
20. Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Zuo XN; Xing XX Neurosci Biobehav Rev; 2014 Sep; 45():100-18. PubMed ID: 24875392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]