These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 235)

  • 21. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals.
    Kukiełka E; Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effectiveness of phenoxyl radicals generated by peroxidase/H2O2-catalyzed oxidation of caffeate, ferulate, and p-coumarate in cooxidation of ascorbate and NADH.
    Hadzi-Tasković Sukalović V; Vuletić M; Vucinić Z; Veljović-Jovanović S
    J Plant Res; 2008 Jan; 121(1):115-23. PubMed ID: 18071845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination.
    Asada K; Kiso K; Yoshikawa K
    J Biol Chem; 1974 Apr; 249(7):2175-81. PubMed ID: 4362064
    [No Abstract]   [Full Text] [Related]  

  • 24. Oxidation of NADH by vanadium compounds in the presence of thiols.
    Keller RJ; Coulombe RA; Sharma RP; Grover TA; Piette LH
    Arch Biochem Biophys; 1989 May; 271(1):40-8. PubMed ID: 2540716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase.
    Baez S; Linderson Y; Segura-Aguilar J
    Biochem Mol Med; 1995 Feb; 54(1):12-8. PubMed ID: 7551811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence.
    Zavaleta-Mancera HA; López-Delgado H; Loza-Tavera H; Mora-Herrera M; Trevilla-García C; Vargas-Suárez M; Ougham H
    J Plant Physiol; 2007 Dec; 164(12):1572-82. PubMed ID: 17485137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative stress induced by lead in chloroplast of spinach.
    Wu X; Huang H; Liu X; Chen L; Liu C; Su M; Hong F
    Biol Trace Elem Res; 2008; 126(1-3):257-68. PubMed ID: 18709336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen. Effect of superoxide dismutase.
    Scarpa M; Stevanato R; Viglino P; Rigo A
    J Biol Chem; 1983 Jun; 258(11):6695-7. PubMed ID: 6304051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Styrylpyrone biosynthesis in Polyporus hispidus. II. Enzymic hydroxylation of p-coumaric acid and bis-noryangonin.
    Nambudiri AM; Vance CP; Towers GH
    Biochim Biophys Acta; 1974 Mar; 343(1):148-55. PubMed ID: 4151344
    [No Abstract]   [Full Text] [Related]  

  • 30. Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide.
    Egneus H; Heber U; Matthiesen U; Kirk M
    Biochim Biophys Acta; 1975 Dec; 408(3):252-68. PubMed ID: 1191661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism of trinitrobenzene sulfonic acid by the rat colon produces reactive oxygen species.
    Grisham MB; Volkmer C; Tso P; Yamada T
    Gastroenterology; 1991 Aug; 101(2):540-7. PubMed ID: 1648528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of glucose-6-phosphate dehydrogenase in spinach chloroplasts by ribulose 1,5-diphosphate and NADPH/NADP+ ratios.
    Lendzian K; Bassham JA
    Biochim Biophys Acta; 1975 Aug; 396(2):260-75. PubMed ID: 239745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase.
    Halliwell B
    Biochem J; 1977 Jun; 163(3):441-8. PubMed ID: 195574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the superoxide free radical ion in photosynthetic ascorbate oxidation and ascorbate-mediated photophosphorylation.
    Elstner EF; Kramer R
    Biochim Biophys Acta; 1973 Sep; 314(3):340-53. PubMed ID: 4751235
    [No Abstract]   [Full Text] [Related]  

  • 36. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.
    Katsuragi H; Shimoda K; Kubota N; Nakajima N; Hamada H; Hamada H
    Biosci Biotechnol Biochem; 2010; 74(9):1920-4. PubMed ID: 20834169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Role of superoxide anion-radicals and superoxide dismutase in the lipid photoperoxidation reactions of isolated chloroplasts].
    Merzliak MN; Iuferova SG; Sobolev AS
    Biofizika; 1977; 22(5):846-9. PubMed ID: 199281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexibility of coupling and stoichiometry of ATP formation in intact chloroplasts.
    Heber U; Kirk MR
    Biochim Biophys Acta; 1975 Jan; 376(1):136-50. PubMed ID: 164902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydroxyl radicals is not a significant intermediate in the vanadate-stimulated oxidation of NAD(P)H by O2.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 1989 Nov; 275(1):40-3. PubMed ID: 2554810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells.
    Parker A; Cuddihy SL; Son TG; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2011 Oct; 51(7):1399-405. PubMed ID: 21791243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.