BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23500042)

  • 1. The influence of rolling friction on the shear behaviour of non-cohesive pharmaceutical granules--an experimental and numerical investigation.
    Persson AS; Frenning G
    Eur J Pharm Sci; 2013 May; 49(2):241-50. PubMed ID: 23500042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flowability of surface modified pharmaceutical granules: A comparative experimental and numerical study.
    Persson AS; Alderborn G; Frenning G
    Eur J Pharm Sci; 2011 Feb; 42(3):199-209. PubMed ID: 21112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle shape on powder flowability of microcrystalline cellulose as determined using the vibration shear tube method.
    Horio T; Yasuda M; Matsusaka S
    Int J Pharm; 2014 Oct; 473(1-2):572-8. PubMed ID: 25079435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of microcrystalline cellulose spheres and prediction of hopper flow based on a μ(I)-rheology model.
    Remmelgas J; Fall A; Sasic S; Ström H; Tajarobi P; Wikström H; Marucci M; Boissier C
    Eur J Pharm Sci; 2020 Jan; 142():105085. PubMed ID: 31669423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of load on particle size distribution of lactose-crystalline cellulose mixed powder.
    Nakamori T; Miyagishim A; Nozawa Y; Sadzuka Y; Sonobe T
    Int J Pharm; 2008 Apr; 354(1-2):255-9. PubMed ID: 18258396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Pharmaceutical Powder Flowability using Shear Cell-Based Methods and Application of Jenike's Methodology.
    Jager PD; Bramante T; Luner PE
    J Pharm Sci; 2015 Nov; 104(11):3804-3813. PubMed ID: 26220285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and validation of an annular shear cell for pharmaceutical powder testing.
    Ramachandruni H; Hoag SW
    J Pharm Sci; 2001 May; 90(5):531-40. PubMed ID: 11288098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheology of cohesive granular materials across multiple dense-flow regimes.
    Gu Y; Chialvo S; Sundaresan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032206. PubMed ID: 25314436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of colloidal silica on rheological properties of common pharmaceutical excipients.
    Majerová D; Kulaviak L; Růžička M; Štěpánek F; Zámostný P
    Eur J Pharm Biopharm; 2016 Sep; 106():2-8. PubMed ID: 27163240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressibility and tablet forming ability of bimodal granule mixtures: Experiments and DEM simulations.
    Nordström J; Alderborn G; Frenning G
    Int J Pharm; 2018 Apr; 540(1-2):120-131. PubMed ID: 29425765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rheological properties of self-emulsifying systems, water and microcrystalline cellulose.
    Newton JM; Bazzigialuppi M; Podczeck F; Booth S; Clarke A
    Eur J Pharm Sci; 2005 Oct; 26(2):176-83. PubMed ID: 16046106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Powder flow in an automated uniaxial tester and an annular shear cell: a study of pharmaceutical excipients and analytical data comparison.
    Kuentz M; Schirg P
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1476-83. PubMed ID: 23043592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of rolling resistance as a shape parameter in sheared granular media.
    Estrada N; Azéma E; Radjai F; Taboada A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011306. PubMed ID: 21867163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rheological properties of modified microcrystalline cellulose containing high levels of model drugs.
    Knight PE; Podczeck F; Newton JM
    J Pharm Sci; 2009 Jun; 98(6):2160-9. PubMed ID: 18825774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of ring shear testing as a characterization method for powder flow in small-scale powder processing equipment.
    Søgaard SV; Pedersen T; Allesø M; Garnaes J; Rantanen J
    Int J Pharm; 2014 Nov; 475(1-2):315-23. PubMed ID: 25178826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Rolling Transition in a Granular Flow along a Rotating Wall.
    Rioual F; Quiniou AL; Lapusta Y
    Materials (Basel); 2011 Nov; 4(11):2003-2016. PubMed ID: 28824120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. About the influence of friction and polydispersity on the jamming behavior of bead assemblies.
    Pournin L; Ramaioli M; Folly P; Liebling TM
    Eur Phys J E Soft Matter; 2007 Jun; 23(2):229-35. PubMed ID: 17568990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaluation of powder flow parameters with reference to particle size and shape.
    Goh HP; Heng PWS; Liew CV
    Int J Pharm; 2018 Aug; 547(1-2):133-141. PubMed ID: 29803793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology of dense granular mixtures: particle-size distributions, boundary conditions, and collisional time scales.
    Yohannes B; Hill KM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061301. PubMed ID: 21230666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow Function of Pharmaceutical Powders Is Predominantly Governed by Cohesion, Not by Friction Coefficients.
    Leung LY; Mao C; Srivastava I; Du P; Yang CY
    J Pharm Sci; 2017 Jul; 106(7):1865-1873. PubMed ID: 28416416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.