These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 23500069)
1. Superb resolution and contrast of transmission electron microscopy images of unstained biological samples on graphene-coated grids. Jeon J; Lodge MS; Dawson BD; Ishigami M; Shewmaker F; Chen B Biochim Biophys Acta; 2013 Jun; 1830(6):3807-15. PubMed ID: 23500069 [TBL] [Abstract][Full Text] [Related]
2. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes. Rubino S; Akhtar S; Leifer K Microsc Microanal; 2016 Feb; 22(1):250-6. PubMed ID: 26915000 [TBL] [Abstract][Full Text] [Related]
3. The use of a central beam stop for contrast enhancement in TEM imaging. Zhang C; Xu Q; Peters PJ; Zandbergen H Ultramicroscopy; 2013 Nov; 134():200-6. PubMed ID: 23867010 [TBL] [Abstract][Full Text] [Related]
4. Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques. Kabiri Y; Ananth AN; van der Torre J; Katan A; Hong JY; Malladi S; Kong J; Zandbergen H; Dekker C Small; 2017 Aug; 13(31):. PubMed ID: 28620911 [TBL] [Abstract][Full Text] [Related]
5. Reduced Radiation Damage in Transmission Electron Microscopy of Proteins in Graphene Liquid Cells. Keskin S; de Jonge N Nano Lett; 2018 Dec; 18(12):7435-7440. PubMed ID: 30431282 [TBL] [Abstract][Full Text] [Related]
6. Low voltage transmission electron microscopy of graphene. Bachmatiuk A; Zhao J; Gorantla SM; Martinez IG; Wiedermann J; Lee C; Eckert J; Rummeli MH Small; 2015 Feb; 11(5):515-42. PubMed ID: 25408379 [TBL] [Abstract][Full Text] [Related]
7. Choice of operating voltage for a transmission electron microscope. Egerton RF Ultramicroscopy; 2014 Oct; 145():85-93. PubMed ID: 24679438 [TBL] [Abstract][Full Text] [Related]
8. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Chen Q; Smith JM; Park J; Kim K; Ho D; Rasool HI; Zettl A; Alivisatos AP Nano Lett; 2013 Sep; 13(9):4556-61. PubMed ID: 23944844 [TBL] [Abstract][Full Text] [Related]
9. Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy. Park J; Park H; Ercius P; Pegoraro AF; Xu C; Kim JW; Han SH; Weitz DA Nano Lett; 2015 Jul; 15(7):4737-44. PubMed ID: 26065925 [TBL] [Abstract][Full Text] [Related]
10. Control of radiation damage in the TEM. Egerton RF Ultramicroscopy; 2013 Apr; 127():100-8. PubMed ID: 22910614 [TBL] [Abstract][Full Text] [Related]
11. Graphene oxide single sheets as substrates for high resolution cryoTEM. van de Put MW; Patterson JP; Bomans PH; Wilson NR; Friedrich H; van Benthem RA; de With G; O'Reilly RK; Sommerdijk NA Soft Matter; 2015 Feb; 11(7):1265-70. PubMed ID: 25516333 [TBL] [Abstract][Full Text] [Related]
12. Silicon nitride grids are compatible with correlative negative staining electron microscopy and tip-enhanced Raman spectroscopy for use in the detection of micro-organisms. Lausch V; Hermann P; Laue M; Bannert N J Appl Microbiol; 2014 Jun; 116(6):1521-30. PubMed ID: 24684504 [TBL] [Abstract][Full Text] [Related]
13. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Chowdhury S; Balasubramanian R Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086 [TBL] [Abstract][Full Text] [Related]
14. Liquid-Flowing Graphene Chip-Based High-Resolution Electron Microscopy. Koo K; Park J; Ji S; Toleukhanova S; Yuk JM Adv Mater; 2021 Jan; 33(2):e2005468. PubMed ID: 33215775 [TBL] [Abstract][Full Text] [Related]
15. Oxidative doping renders graphene hydrophilic, facilitating its use as a support in biological TEM. Pantelic RS; Suk JW; Hao Y; Ruoff RS; Stahlberg H Nano Lett; 2011 Oct; 11(10):4319-23. PubMed ID: 21910506 [TBL] [Abstract][Full Text] [Related]
16. In-focus electrostatic Zach phase plate imaging for transmission electron microscopy with tunable phase contrast of frozen hydrated biological samples. Frindt N; Oster M; Hettler S; Gamm B; Dieterle L; Kowalsky W; Gerthsen D; Schröder RR Microsc Microanal; 2014 Feb; 20(1):175-83. PubMed ID: 24382158 [TBL] [Abstract][Full Text] [Related]
17. Preparation of viral samples within biocontainment for ultrastructural analysis: Utilization of an innovative processing capsule for negative staining. Monninger MK; Nguessan CA; Blancett CD; Kuehl KA; Rossi CA; Olschner SP; Williams PL; Goodman SL; Sun MG J Virol Methods; 2016 Dec; 238():70-76. PubMed ID: 27751950 [TBL] [Abstract][Full Text] [Related]
18. An analytical technique to extract surface information of negatively stained or heavy-metal shadowed organic materials within the TEM. Matsko NB; Letofsky-Papst I; Albu M; Mittal V Microsc Microanal; 2013 Jun; 19(3):642-51. PubMed ID: 23570815 [TBL] [Abstract][Full Text] [Related]
19. Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide. Boothroyd CB; Moreno MS; Duchamp M; Kovács A; Monge N; Morales GM; Barbero CA; Dunin-Borkowski RE Ultramicroscopy; 2014 Oct; 145():66-73. PubMed ID: 24726278 [TBL] [Abstract][Full Text] [Related]
20. Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching. Hauwiller MR; Ondry JC; Alivisatos AP J Vis Exp; 2018 May; (135):. PubMed ID: 29863683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]