These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 23500429)

  • 41. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils.
    Gaonkar T; Bhosle S
    Chemosphere; 2013 Nov; 93(9):1835-43. PubMed ID: 23838040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape.
    Sheng XF; Xia JJ; Jiang CY; He LY; Qian M
    Environ Pollut; 2008 Dec; 156(3):1164-70. PubMed ID: 18490091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil.
    Deng Z; Cao L; Huang H; Jiang X; Wang W; Shi Y; Zhang R
    J Hazard Mater; 2011 Jan; 185(2-3):717-24. PubMed ID: 20956060
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger.
    Ren WX; Li PJ; Geng Y; Li XJ
    J Hazard Mater; 2009 Aug; 167(1-3):164-9. PubMed ID: 19232463
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments.
    Zhang X; Zhu Y; Zhang Y; Liu Y; Liu S; Guo J; Li R; Wu S; Chen B
    J Environ Sci (China); 2014 May; 26(5):1080-9. PubMed ID: 25079638
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.
    Bang J; Kamala-Kannan S; Lee KJ; Cho M; Kim CH; Kim YJ; Bae JH; Kim KH; Myung H; Oh BT
    Int J Phytoremediation; 2015; 17(1-6):515-20. PubMed ID: 25747237
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal-immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions.
    Han H; Sheng X; Hu J; He L; Wang Q
    Ecotoxicol Environ Saf; 2018 Oct; 161():526-533. PubMed ID: 29929128
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.
    Chaturvedi PK; Seth CS; Misra V
    J Hazard Mater; 2007 Aug; 147(3):698-705. PubMed ID: 17303325
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals.
    Zhang X; Li M; Yang H; Li X; Cui Z
    J Environ Manage; 2018 Oct; 223():132-139. PubMed ID: 29909097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1.
    Yilmaz EI
    Res Microbiol; 2003; 154(6):409-15. PubMed ID: 12892847
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil.
    Sheng X; He L; Wang Q; Ye H; Jiang C
    J Hazard Mater; 2008 Jun; 155(1-2):17-22. PubMed ID: 18082946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain.
    Kidd PS; Monterroso C
    Sci Total Environ; 2005 Jan; 336(1-3):1-11. PubMed ID: 15589245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils.
    Kumar V; Singh S; Singh J; Upadhyay N
    Bull Environ Contam Toxicol; 2015 Jun; 94(6):807-14. PubMed ID: 25782590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heavy metal removal from contaminated sludge for land application: a review.
    Babel S; del Mundo Dacera D
    Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.
    Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L
    Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Jatropha curcas: a potential crop for phytoremediation of coal fly ash.
    Jamil S; Abhilash PC; Singh N; Sharma PN
    J Hazard Mater; 2009 Dec; 172(1):269-75. PubMed ID: 19640648
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From industrial sites to environmental applications with Cupriavidus metallidurans.
    Diels L; Van Roy S; Taghavi S; Van Houdt R
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18.
    Luo S; Xu T; Chen L; Chen J; Rao C; Xiao X; Wan Y; Zeng G; Long F; Liu C; Liu Y
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1745-53. PubMed ID: 21792590
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria.
    Carlos MJ; Stefani PY; Janette AM; Melani MS; Gabriela PO
    Microbiol Res; 2016; 188-189():53-61. PubMed ID: 27296962
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.
    Martínez-Alcalá I; Walker DJ; Bernal MP
    Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.