BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 23500492)

  • 21. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.
    Nishimasu H; Yamano T; Gao L; Zhang F; Ishitani R; Nureki O
    Mol Cell; 2017 Jul; 67(1):139-147.e2. PubMed ID: 28595896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPRs) loci in the genomes of halophilic archaea].
    Zhang F; Zhang B; Xiang H; Hu S
    Wei Sheng Wu Xue Bao; 2009 Nov; 49(11):1445-53. PubMed ID: 20112671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Programmable DNA cleavage in vitro by Cas9.
    Karvelis T; Gasiunas G; Siksnys V
    Biochem Soc Trans; 2013 Dec; 41(6):1401-6. PubMed ID: 24256227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis of Type IV CRISPR RNA biogenesis by a Cas6 endoribonuclease.
    Taylor HN; Warner EE; Armbrust MJ; Crowley VM; Olsen KJ; Jackson RN
    RNA Biol; 2019 Oct; 16(10):1438-1447. PubMed ID: 31232162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural insights into specific crRNA G-rich sequence binding by Meiothermus ruber Cse2.
    Liu S; Yuan Z; Yuan YA
    J Struct Biol; 2015 May; 190(2):122-34. PubMed ID: 25791617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Cmr complex: an RNA-guided endoribonuclease.
    Bailey S
    Biochem Soc Trans; 2013 Dec; 41(6):1464-7. PubMed ID: 24256238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases.
    Niewoehner O; Jinek M; Doudna JA
    Nucleic Acids Res; 2014 Jan; 42(2):1341-53. PubMed ID: 24150936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active site plasticity enables metal-dependent tuning of Cas5d nuclease activity in CRISPR-Cas type I-C system.
    Punetha A; Sivathanu R; Anand B
    Nucleic Acids Res; 2014 Apr; 42(6):3846-56. PubMed ID: 24371266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense.
    Wiedenheft B; Zhou K; Jinek M; Coyle SM; Ma W; Doudna JA
    Structure; 2009 Jun; 17(6):904-12. PubMed ID: 19523907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.
    Wakefield N; Rajan R; Sontheimer EJ
    FEBS Lett; 2015 Oct; 589(20 Pt B):3197-204. PubMed ID: 26364721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of Cas1 from Archaeoglobus fulgidus and characterization of its nucleolytic activity.
    Kim TY; Shin M; Huynh Thi Yen L; Kim JS
    Biochem Biophys Res Commun; 2013 Nov; 441(4):720-5. PubMed ID: 24211577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity.
    Charpentier E; Richter H; van der Oost J; White MF
    FEMS Microbiol Rev; 2015 May; 39(3):428-41. PubMed ID: 25994611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1.
    Nickel L; Ulbricht A; Alkhnbashi OS; Förstner KU; Cassidy L; Weidenbach K; Backofen R; Schmitz RA
    RNA Biol; 2019 Apr; 16(4):492-503. PubMed ID: 30153081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal Structure of Streptococcus pyogenes Cas1 and Its Interaction with Csn2 in the Type II CRISPR-Cas System.
    Ka D; Lee H; Jung YD; Kim K; Seok C; Suh N; Bae E
    Structure; 2016 Jan; 24(1):70-79. PubMed ID: 26671707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats.
    Beloglazova N; Brown G; Zimmerman MD; Proudfoot M; Makarova KS; Kudritska M; Kochinyan S; Wang S; Chruszcz M; Minor W; Koonin EV; Edwards AM; Savchenko A; Yakunin AF
    J Biol Chem; 2008 Jul; 283(29):20361-71. PubMed ID: 18482976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli.
    van Erp PB; Jackson RN; Carter J; Golden SM; Bailey S; Wiedenheft B
    Nucleic Acids Res; 2015 Sep; 43(17):8381-91. PubMed ID: 26243775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas systems and RNA-guided interference.
    Barrangou R
    Wiley Interdiscip Rev RNA; 2013; 4(3):267-78. PubMed ID: 23520078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus.
    Tamulaitis G; Kazlauskiene M; Manakova E; Venclovas Č; Nwokeoji AO; Dickman MJ; Horvath P; Siksnys V
    Mol Cell; 2014 Nov; 56(4):506-17. PubMed ID: 25458845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for dimer formation of the CRISPR-associated protein Csm2 of Thermotoga maritima.
    Gallo G; Augusto G; Rangel G; Zelanis A; Mori MA; Campos CB; Würtele M
    FEBS J; 2016 Feb; 283(4):694-703. PubMed ID: 26663887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The subtype I-F CRISPR-Cas system influences pathogenicity island retention in Pectobacterium atrosepticum via crRNA generation and Csy complex formation.
    Richter C; Fineran PC
    Biochem Soc Trans; 2013 Dec; 41(6):1468-74. PubMed ID: 24256239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.