These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23500558)

  • 1. Reduction of excess sludge production in sequencing batch reactor (SBR) by lysis-cryptic growth using homogenization disruption.
    Lan W; Li Y; Bi Q; Hu Y
    Bioresour Technol; 2013 Apr; 134():43-50. PubMed ID: 23500558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment.
    Ma H; Zhang S; Lu X; Xi B; Guo X; Wang H; Duan J
    Bioresour Technol; 2012 Jul; 116():441-7. PubMed ID: 22522015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of excess sludge in a sequencing batch reactor by lysis-cryptic growth using quick lime for disintegration under low temperature.
    Lv XM; Song JS; Li J; Zhai K
    Environ Technol; 2017 Aug; 38(15):1835-1842. PubMed ID: 27691718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of high pressure and ambient pressure aerobic granulation sequential batch reactor processes.
    Liang YM; Yang YL; Chang YW; Chen JY; Li CW; Yu JH; Chen SS
    Bioresour Technol; 2013 Jul; 140():28-35. PubMed ID: 23672936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of aerobic granular sludge in polishing the UASB effluent.
    Zhang LL; Zhang B; Huang YF; Cai WM
    Environ Technol; 2005 Dec; 26(12):1327-34. PubMed ID: 16372567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge.
    Wichern M; Lübken M; Horn H
    Water Sci Technol; 2008; 58(6):1199-206. PubMed ID: 18845857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of COD/N ratio on cultivation of aerobic granular sludge in a pilot-scale sequencing batch reactor.
    Wei D; Qiao Z; Zhang Y; Hao L; Si W; Du B; Wei Q
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1745-53. PubMed ID: 22526775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sewage sludge solubilization by high-pressure homogenization.
    Zhang Y; Zhang P; Guo J; Ma W; Fang W; Ma B; Xu X
    Water Sci Technol; 2013; 67(11):2399-405. PubMed ID: 23752369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.
    Foladori P; Velho VF; Costa RH; Bruni L; Quaranta A; Andreottola G
    Water Res; 2015 May; 74():132-42. PubMed ID: 25725204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-rate nitrogen removal and its behavior of granular sequence batch reactor under step-feed operational strategy.
    Zhong C; Wang Y; Wang Y; Lv J; Li Y; Zhu J
    Bioresour Technol; 2013 Apr; 134():101-6. PubMed ID: 23500566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus removal characteristics of granular and flocculent sludge in SBR.
    Li X; Gao D; Liang H; Liu L; Fu Y
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):231-6. PubMed ID: 21952941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of extracellular polymeric substances on granulation of anoxic sludge in sequencing batch reactor.
    Wang B; Liu S; Zhao H; Zhang X; Peng D
    Water Sci Technol; 2012; 66(3):543-8. PubMed ID: 22744684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the sludge reduction mechanism in the anaerobic side-stream reactor process using several control biological wastewater treatment processes.
    Chon DH; Rome M; Kim YM; Park KY; Park C
    Water Res; 2011 Nov; 45(18):6021-9. PubMed ID: 21937073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upgrading activated sludge systems and reduction in excess sludge.
    Hazrati H; Shayegan J
    Bioresour Technol; 2011 Nov; 102(22):10327-33. PubMed ID: 21940165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of 14 full-scale sewage treatment plants: comparison between four aerobic technologies regarding effluent quality, sludge production and energy consumption.
    Vera I; Sáez K; Vidal G
    Environ Technol; 2013; 34(13-16):2267-75. PubMed ID: 24350481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Reduction of excess sludge production by cooperation action of Cu2+ and uncoupler].
    Ma ZK; Tian Y; Cheng HF
    Huan Jing Ke Xue; 2007 Aug; 28(8):1697-702. PubMed ID: 17926396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors.
    Liu Y; Liu QS
    Biotechnol Adv; 2006; 24(1):115-27. PubMed ID: 16150563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of excess activated sludge ozonation in an SBR Plant. Effects on substrate fractioning and solids production.
    Naso M; Chiavola A; Rolle E
    Water Sci Technol; 2008; 58(1):239-45. PubMed ID: 18653960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor.
    Wu CY; Peng YZ; Wang RD; Zhou YX
    Chemosphere; 2012 Feb; 86(8):767-73. PubMed ID: 22130123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.