These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 23500562)

  • 1. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.
    Zhang X; Zhang Q; Wang T; Ma L; Yu Y; Chen L
    Bioresour Technol; 2013 Apr; 134():73-80. PubMed ID: 23500562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks.
    Schutyser W; Van den Bosch S; Dijkmans J; Turner S; Meledina M; Van Tendeloo G; Debecker DP; Sels BF
    ChemSusChem; 2015 May; 8(10):1805-18. PubMed ID: 25881563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrotreatment of bio-oil over Ni-based catalyst.
    Zhang X; Wang T; Ma L; Zhang Q; Jiang T
    Bioresour Technol; 2013 Jan; 127():306-11. PubMed ID: 23138057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts.
    Zhao C; Kou Y; Lemonidou AA; Li X; Lercher JA
    Chem Commun (Camb); 2010 Jan; 46(3):412-4. PubMed ID: 20066309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.
    Bu Q; Lei H; Zacher AH; Wang L; Ren S; Liang J; Wei Y; Liu Y; Tang J; Zhang Q; Ruan R
    Bioresour Technol; 2012 Nov; 124():470-7. PubMed ID: 23021958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodeoxygenation of Guaiacol Over Pt/Al-SBA-15 Catalysts.
    Yu MJ; Park SH; Jeon JK; Ryu C; Sohn JM; Kim SC; Park YK
    J Nanosci Nanotechnol; 2015 Jan; 15(1):527-31. PubMed ID: 26328395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodeoxygenation of Guaiacol over Ceria-Zirconia Catalysts.
    Schimming SM; LaMont OD; König M; Rogers AK; D'Amico AD; Yung MM; Sievers C
    ChemSusChem; 2015 Jun; 8(12):2073-83. PubMed ID: 26036450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective regulation of products for guaiacol hydrodeoxygenation by adjusting type and acidity of supports.
    Lin M; Jiang D; Yan Y; Zhan L; Song X; Li R; Wu Y
    Bioresour Technol; 2024 Dec; 413():131478. PubMed ID: 39265753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst.
    Lee H; Kim H; Yu MJ; Ko CH; Jeon JK; Jae J; Park SH; Jung SC; Park YK
    Sci Rep; 2016 Jun; 6():28765. PubMed ID: 27357731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domino-cyclisation and hydrogenation of citronellal to menthol over bifunctional Ni/Zr-Beta and Zr-beta/Ni-MCM-41 catalysts.
    Nie Y; Chuah GK; Jaenicke S
    Chem Commun (Camb); 2006 Feb; (7):790-2. PubMed ID: 16465342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2.
    Foraita S; Fulton JL; Chase ZA; Vjunov A; Xu P; Baráth E; Camaioni DM; Zhao C; Lercher JA
    Chemistry; 2015 Feb; 21(6):2423-34. PubMed ID: 25504844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodeoxygenation of prairie cordgrass bio-oil over Ni based activated carbon synergistic catalysts combined with different metals.
    Cheng S; Wei L; Zhao X; Kadis E; Cao Y; Julson J; Gu Z
    N Biotechnol; 2016 Jun; 33(4):440-8. PubMed ID: 26902668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal conversion of lignin to substituted phenols and aromatic ethers.
    Singh R; Prakash A; Dhiman SK; Balagurumurthy B; Arora AK; Puri SK; Bhaskar T
    Bioresour Technol; 2014 Aug; 165():319-22. PubMed ID: 24636917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biobased alkylphenols from lignins via a two-step pyrolysis - Hydrodeoxygenation approach.
    de Wild PJ; Huijgen WJ; Kloekhorst A; Chowdari RK; Heeres HJ
    Bioresour Technol; 2017 Apr; 229():160-168. PubMed ID: 28110233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ generation of Ni nanoparticles from metal-organic framework precursors and their use for biomass hydrodeoxygenation.
    Čelič TB; Grilc M; Likozar B; Tušar NN
    ChemSusChem; 2015 May; 8(10):1703-10. PubMed ID: 25755008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts.
    Ohta H; Kobayashi H; Hara K; Fukuoka A
    Chem Commun (Camb); 2011 Nov; 47(44):12209-11. PubMed ID: 21991582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.
    Wang Y; He T; Liu K; Wu J; Fang Y
    Bioresour Technol; 2012 Mar; 108():280-4. PubMed ID: 22281148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mesostructured silica catalysts on the depolymerization of organosolv lignin fractionated from woody eucalyptus.
    Klamrassamee T; Laosiripojana N; Cronin D; Moghaddam L; Zhang Z; Doherty WO
    Bioresour Technol; 2015 Mar; 180():222-9. PubMed ID: 25614246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Hydrodeoxygenation of Bio-oil via Bimetallic Ni-V Catalysts Modified by Cross-Surface Migrated-Carbon from Biochar.
    Wu Y; Sun Y; Liang K; Yang Z; Tu R; Fan X; Cheng S; Yu H; Jiang E; Xu X
    ACS Appl Mater Interfaces; 2021 May; 13(18):21482-21498. PubMed ID: 33928779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ni-catalyzed cleavage of aryl ethers in the aqueous phase.
    He J; Zhao C; Lercher JA
    J Am Chem Soc; 2012 Dec; 134(51):20768-75. PubMed ID: 23190332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.