These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 23500795)
1. Molecular dissection of mercury-responsive transcriptome and sense/antisense genes in Medicago truncatula. Zhou ZS; Yang SN; Li H; Zhu CC; Liu ZP; Yang ZM J Hazard Mater; 2013 May; 252-253():123-31. PubMed ID: 23500795 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Zhou ZS; Zeng HQ; Liu ZP; Yang ZM Plant Cell Environ; 2012 Jan; 35(1):86-99. PubMed ID: 21895696 [TBL] [Abstract][Full Text] [Related]
3. Identification of a group of XTHs genes responding to heavy metal mercury, salinity and drought stresses in Medicago truncatula. Xuan Y; Zhou ZS; Li HB; Yang ZM Ecotoxicol Environ Saf; 2016 Oct; 132():153-63. PubMed ID: 27318197 [TBL] [Abstract][Full Text] [Related]
4. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Zhou ZS; Huang SQ; Yang ZM Biochem Biophys Res Commun; 2008 Sep; 374(3):538-42. PubMed ID: 18662674 [TBL] [Abstract][Full Text] [Related]
5. Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach. Godiard L; Niebel A; Micheli F; Gouzy J; Ott T; Gamas P Mol Plant Microbe Interact; 2007 Mar; 20(3):321-32. PubMed ID: 17378435 [TBL] [Abstract][Full Text] [Related]
7. Molecular dissection of atrazine-responsive transcriptome and gene networks in rice by high-throughput sequencing. Zhang JJ; Zhou ZS; Song JB; Liu ZP; Yang H J Hazard Mater; 2012 Jun; 219-220():57-68. PubMed ID: 22503142 [TBL] [Abstract][Full Text] [Related]
8. Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress. Montero-Palmero MB; Martín-Barranco A; Escobar C; Hernández LE New Phytol; 2014 Jan; 201(1):116-130. PubMed ID: 24033367 [TBL] [Abstract][Full Text] [Related]
9. Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. Cheung F; Haas BJ; Goldberg SM; May GD; Xiao Y; Town CD BMC Genomics; 2006 Oct; 7():272. PubMed ID: 17062153 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analyses of Populus x euramericana clone I-214 leaves exposed to excess zinc. Di Baccio D; Galla G; Bracci T; Andreucci A; Barcaccia G; Tognetti R; Sebastiani L Tree Physiol; 2011 Dec; 31(12):1293-308. PubMed ID: 22038866 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis of Medicago truncatula leaf senescence: similarities and differences in metabolic and transcriptional regulations as compared with Arabidopsis, nodule senescence and nitric oxide signalling. De Michele R; Formentin E; Todesco M; Toppo S; Carimi F; Zottini M; Barizza E; Ferrarini A; Delledonne M; Fontana P; Lo Schiavo F New Phytol; 2009; 181(3):563-75. PubMed ID: 19021865 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic and physiological analyses of Medicago sativa L. roots in response to lead stress. Xu B; Wang Y; Zhang S; Guo Q; Jin Y; Chen J; Gao Y; Ma H PLoS One; 2017; 12(4):e0175307. PubMed ID: 28388670 [TBL] [Abstract][Full Text] [Related]
13. Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb. Shen Y; Zhang Y; Chen J; Lin H; Zhao M; Peng H; Liu L; Yuan G; Zhang S; Zhang Z; Pan G Physiol Plant; 2013 Mar; 147(3):270-82. PubMed ID: 22747913 [TBL] [Abstract][Full Text] [Related]
14. A correlative study of hydrogen peroxide accumulation after mercury or copper treatment observed in root nodules of Medicago truncatula under light, confocal and electron microscopy. Górska-Czekaj M; Borucki W Micron; 2013; 52-53():24-32. PubMed ID: 24029552 [TBL] [Abstract][Full Text] [Related]
15. Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Merchan F; de Lorenzo L; Rizzo SG; Niebel A; Manyani H; Frugier F; Sousa C; Crespi M Plant J; 2007 Jul; 51(1):1-17. PubMed ID: 17488237 [TBL] [Abstract][Full Text] [Related]
16. Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions. Ferrarini A; De Stefano M; Baudouin E; Pucciariello C; Polverari A; Puppo A; Delledonne M Mol Plant Microbe Interact; 2008 Jun; 21(6):781-90. PubMed ID: 18624641 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Guo X; Li Y; Li C; Luo H; Wang L; Qian J; Luo X; Xiang L; Song J; Sun C; Xu H; Yao H; Chen S Gene; 2013 Sep; 527(1):131-8. PubMed ID: 23756193 [TBL] [Abstract][Full Text] [Related]
18. Ozone responsive genes in Medicago truncatula: analysis by suppression subtraction hybridization. Puckette M; Peal L; Steele J; Tang Y; Mahalingam R J Plant Physiol; 2009 Aug; 166(12):1284-1295. PubMed ID: 19268390 [TBL] [Abstract][Full Text] [Related]
19. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. de Zélicourt A; Diet A; Marion J; Laffont C; Ariel F; Moison M; Zahaf O; Crespi M; Gruber V; Frugier F Plant J; 2012 Apr; 70(2):220-30. PubMed ID: 22098255 [TBL] [Abstract][Full Text] [Related]
20. Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions. Seddas PM; Arias CM; Arnould C; van Tuinen D; Godfroy O; Benhassou HA; Gouzy J; Morandi D; Dessaint F; Gianinazzi-Pearson V Mol Plant Microbe Interact; 2009 Mar; 22(3):341-51. PubMed ID: 19245328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]