BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 23501105)

  • 21. In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels.
    Tuan TL; Song A; Chang S; Younai S; Nimni ME
    Exp Cell Res; 1996 Feb; 223(1):127-34. PubMed ID: 8635484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colorectal cancer desmoplastic reaction up-regulates collagen synthesis and restricts cancer cell invasion.
    Coulson-Thomas VJ; Coulson-Thomas YM; Gesteira TF; de Paula CA; Mader AM; Waisberg J; Pinhal MA; Friedl A; Toma L; Nader HB
    Cell Tissue Res; 2011 Nov; 346(2):223-36. PubMed ID: 21987222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic macroporous hydrogel scaffolds in a high-throughput screening format for cell-based assays.
    Dainiak MB; Savina IN; Musolino I; Kumar A; Mattiasson B; Galaev IY
    Biotechnol Prog; 2008; 24(6):1373-83. PubMed ID: 19194952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing.
    Zhang X; Wang W; Yu W; Xie Y; Zhang X; Zhang Y; Ma X
    Biotechnol Prog; 2005; 21(4):1289-96. PubMed ID: 16080713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels.
    Ghezzi CE; Muja N; Marelli B; Nazhat SN
    Biomaterials; 2011 Jul; 32(21):4761-72. PubMed ID: 21514662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the cholesteatoma microenvironment: coculture of HaCaT keratinocytes with WS1 fibroblasts induces MMP-2 activation, invasive phenotype, and proteolysis of the extracellular matrix.
    Laeeq S; Faust R
    Laryngoscope; 2007 Feb; 117(2):313-8. PubMed ID: 17204986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of stromal components on the modulation of the phenotype of human bronchial epithelial cells in 3D culture.
    Pageau SC; Sazonova OV; Wong JY; Soto AM; Sonnenschein C
    Biomaterials; 2011 Oct; 32(29):7169-80. PubMed ID: 21724251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device.
    Liu T; Lin B; Qin J
    Lab Chip; 2010 Jul; 10(13):1671-7. PubMed ID: 20414488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening.
    Rijal G; Li W
    Sci Adv; 2017 Sep; 3(9):e1700764. PubMed ID: 28924608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341.
    Frankel A; Man S; Elliott P; Adams J; Kerbel RS
    Clin Cancer Res; 2000 Sep; 6(9):3719-28. PubMed ID: 10999766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds.
    Bulysheva AA; Bowlin GL; Petrova SP; Yeudall WA
    Biomed Mater; 2013 Oct; 8(5):055009. PubMed ID: 24057893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs.
    Chen L; Xiao Z; Meng Y; Zhao Y; Han J; Su G; Chen B; Dai J
    Biomaterials; 2012 Feb; 33(5):1437-44. PubMed ID: 22078807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single cell viability measurements in 3D scaffolds using in situ label free imaging by optical coherence microscopy.
    Dunkers JP; Lee YJ; Chatterjee K
    Biomaterials; 2012 Mar; 33(7):2119-26. PubMed ID: 22192538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of size-customized hepatocarcinoma spheroids as a potential drug testing platform using a sacrificial gelatin microsphere system.
    Leong W; Kremer A; Wang DA
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():644-9. PubMed ID: 27040260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of the spheroid model complexity on drug response.
    Hoffmann OI; Ilmberger C; Magosch S; Joka M; Jauch KW; Mayer B
    J Biotechnol; 2015 Jul; 205():14-23. PubMed ID: 25746901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3-D tumor model for in vitro evaluation of anticancer drugs.
    Horning JL; Sahoo SK; Vijayaraghavalu S; Dimitrijevic S; Vasir JK; Jain TK; Panda AK; Labhasetwar V
    Mol Pharm; 2008; 5(5):849-62. PubMed ID: 18680382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development, validation and pilot screening of an in vitro multi-cellular three-dimensional cancer spheroid assay for anti-cancer drug testing.
    Lama R; Zhang L; Naim JM; Williams J; Zhou A; Su B
    Bioorg Med Chem; 2013 Feb; 21(4):922-31. PubMed ID: 23306053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro toxicity testing of nanoparticles in 3D cell culture.
    Lee J; Lilly GD; Doty RC; Podsiadlo P; Kotov NA
    Small; 2009 May; 5(10):1213-21. PubMed ID: 19263430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Novel Stromal Fibroblast-Modulated 3D Tumor Spheroid Model for Studying Tumor-Stroma Interaction and Drug Discovery.
    Shao H; Moller M; Wang D; Ting A; Boulina M; Liu ZJ
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.