These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 23501491)
1. Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms. Iwasaki Y; Cadmus P; Clements WH Aquat Toxicol; 2013 May; 132-133():151-6. PubMed ID: 23501491 [TBL] [Abstract][Full Text] [Related]
2. Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Stockdale A; Tipping E; Lofts S; Ormerod SJ; Clements WH; Blust R Aquat Toxicol; 2010 Oct; 100(1):112-9. PubMed ID: 20701986 [TBL] [Abstract][Full Text] [Related]
3. Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model. Tipping E; Lofts S Aquat Toxicol; 2013 Oct; 142-143():114-22. PubMed ID: 23994673 [TBL] [Abstract][Full Text] [Related]
4. Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River watershed, Montana, and the role of colloids in metal uptake. Farag AM; Nimick DA; Kimball BA; Church SE; Harper DD; Brumbaugh WG Arch Environ Contam Toxicol; 2007 Apr; 52(3):397-409. PubMed ID: 17219028 [TBL] [Abstract][Full Text] [Related]
5. Development of a new toxic-unit model for the bioassessment of metals in streams. Schmidt TS; Clements WH; Mitchell KA; Church SE; Wanty RB; Fey DL; Verplanck PL; San Juan CA Environ Toxicol Chem; 2010 Nov; 29(11):2432-42. PubMed ID: 20853459 [TBL] [Abstract][Full Text] [Related]
6. The use of invertebrate body burdens to predict ecological effects of metal mixtures in mining-impacted waters. De Jonge M; Tipping E; Lofts S; Bervoets L; Blust R Aquat Toxicol; 2013 Oct; 142-143():294-302. PubMed ID: 24076621 [TBL] [Abstract][Full Text] [Related]
7. Metal accumulation by stream bryophytes, related to chemical speciation. Tipping E; Vincent CD; Lawlor AJ; Lofts S Environ Pollut; 2008 Dec; 156(3):936-43. PubMed ID: 18541353 [TBL] [Abstract][Full Text] [Related]
8. Isolating the impact of sediment toxicity in urban streams. Marshall S; Pettigrove V; Carew M; Hoffmann A Environ Pollut; 2010 May; 158(5):1716-25. PubMed ID: 20071061 [TBL] [Abstract][Full Text] [Related]
9. Does a sum of toxic units exceeding 1 imply adverse impacts on macroinvertebrate assemblages? A field study in a northern Japanese river receiving treated mine discharge. Iwasaki Y; Fujisawa M; Ogino T; Mano H; Shinohara N; Masunaga S; Kamo M Environ Monit Assess; 2020 Jan; 192(2):83. PubMed ID: 31900674 [TBL] [Abstract][Full Text] [Related]
10. Caddisflies as biomonitors identifying thresholds of toxic metal bioavailability that affect the stream benthos. Rainbow PS; Hildrew AG; Smith BD; Geatches T; Luoma SN Environ Pollut; 2012 Jul; 166():196-207. PubMed ID: 22513001 [TBL] [Abstract][Full Text] [Related]
11. Effects of a reservoir flushing on trace metal partitioning, speciation and benthic invertebrates in the floodplain. Peter DH; Castella E; Slaveykova VI Environ Sci Process Impacts; 2014 Dec; 16(12):2692-702. PubMed ID: 25354309 [TBL] [Abstract][Full Text] [Related]
12. Effect of humic acid during concurrent chronic waterborne exposure of rainbow trout (Oncorhynchus mykiss) to copper, cadmium and zinc. Kamunde C; MacPhail R Ecotoxicol Environ Saf; 2011 Mar; 74(3):259-69. PubMed ID: 20970854 [TBL] [Abstract][Full Text] [Related]
13. Expanding metal mixture toxicity models to natural stream and lake invertebrate communities. Balistrieri LS; Mebane CA; Schmidt TS; Keller WB Environ Toxicol Chem; 2015 Apr; 34(4):761-76. PubMed ID: 25477294 [TBL] [Abstract][Full Text] [Related]
14. Responses of aquatic organisms to metal pollution in a lowland river in Flanders: a comparison of diatoms and macroinvertebrates. De Jonge M; Van de Vijver B; Blust R; Bervoets L Sci Total Environ; 2008 Dec; 407(1):615-29. PubMed ID: 18778849 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations. Allan IJ; Knutsson J; Guigues N; Mills GA; Fouillac AM; Greenwood R J Environ Monit; 2007 Jul; 9(7):672-81. PubMed ID: 17607387 [TBL] [Abstract][Full Text] [Related]
16. Relating metal exposure and chemical speciation to trace metal accumulation in aquatic insects under natural field conditions. De Jonge M; Lofts S; Bervoets L; Blust R Sci Total Environ; 2014 Oct; 496():11-21. PubMed ID: 25051425 [TBL] [Abstract][Full Text] [Related]
17. Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity. Fornaroli R; Ippolito A; Tolkkinen MJ; Mykrä H; Muotka T; Balistrieri LS; Schmidt TS Environ Pollut; 2018 Apr; 235():889-898. PubMed ID: 29351889 [TBL] [Abstract][Full Text] [Related]
18. Structural and functional responses of periphyton and macroinvertebrate communities to ferric Fe, Cu, and Zn in stream mesocosms. Cadmus P; Guasch H; Herdrich AT; Bonet B; Urrea G; Clements WH Environ Toxicol Chem; 2018 May; 37(5):1320-1329. PubMed ID: 29278661 [TBL] [Abstract][Full Text] [Related]
19. Ecological impact assessment of sediment remediation in a metal-contaminated lowland river using translocated zebra mussels and resident macroinvertebrates. De Jonge M; Belpaire C; Geeraerts C; De Cooman W; Blust R; Bervoets L Environ Pollut; 2012 Dec; 171():99-108. PubMed ID: 22892572 [TBL] [Abstract][Full Text] [Related]
20. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation. Han S; Naito W; Masunaga S Water Sci Technol; 2016; 74(4):896-903. PubMed ID: 27533864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]