These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1199 related articles for article (PubMed ID: 23501724)
1. Signal amplification aptamer biosensor for thrombin based on a glassy carbon electrode modified with graphene, quantum dots and gold nanoparticles. Xie L; You L; Cao X Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 109():110-5. PubMed ID: 23501724 [TBL] [Abstract][Full Text] [Related]
2. Electrogenerated chemiluminescence resonance energy transfer between luminol and CdSe@ZnS quantum dots and its sensing application in the determination of thrombin. Dong YP; Gao TT; Zhou Y; Zhu JJ Anal Chem; 2014 Nov; 86(22):11373-9. PubMed ID: 25361206 [TBL] [Abstract][Full Text] [Related]
3. Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots. Khonsari YN; Sun S Mikrochim Acta; 2018 Aug; 185(9):430. PubMed ID: 30143874 [TBL] [Abstract][Full Text] [Related]
4. Novel magnetic Fe3O4@CdSe composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy. Jie G; Yuan J Anal Chem; 2012 Mar; 84(6):2811-7. PubMed ID: 22320223 [TBL] [Abstract][Full Text] [Related]
5. Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctional aptamer and chemiluminescent functionalized gold nanoparticles. Chai Y; Tian D; Cui H Anal Chim Acta; 2012 Feb; 715():86-92. PubMed ID: 22244171 [TBL] [Abstract][Full Text] [Related]
6. An off-on-off electrochemiluminescence approach for ultrasensitive detection of thrombin. Deng L; Du Y; Xu JJ; Chen HY Biosens Bioelectron; 2014 Sep; 59():58-63. PubMed ID: 24699694 [TBL] [Abstract][Full Text] [Related]
7. A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles. Li F; Cui H Biosens Bioelectron; 2013 Jan; 39(1):261-7. PubMed ID: 22917918 [TBL] [Abstract][Full Text] [Related]
8. Bi-functionalized aptasensor for ultrasensitive detection of thrombin. Lu L; Li J; Kang T; Cheng S Talanta; 2015 Jun; 138():273-278. PubMed ID: 25863401 [TBL] [Abstract][Full Text] [Related]
9. Aptamer-linked biosensor for thrombin based on AuNPs/thionine-graphene nanocomposite. Zhang Z; Luo L; Zhu L; Ding Y; Deng D; Wang Z Analyst; 2013 Sep; 138(18):5365-70. PubMed ID: 23877321 [TBL] [Abstract][Full Text] [Related]
10. Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. Wang J; Shan Y; Zhao WW; Xu JJ; Chen HY Anal Chem; 2011 Jun; 83(11):4004-11. PubMed ID: 21517100 [TBL] [Abstract][Full Text] [Related]
11. A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Zhang J; Chen P; Wu X; Chen J; Xu L; Chen G; Fu F Biosens Bioelectron; 2011 Jan; 26(5):2645-50. PubMed ID: 21146976 [TBL] [Abstract][Full Text] [Related]
12. DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Huang H; Zhu JJ Biosens Bioelectron; 2009 Dec; 25(4):927-30. PubMed ID: 19747817 [TBL] [Abstract][Full Text] [Related]
13. Signal amplification for thrombin impedimetric aptasensor: sandwich protocol and use of gold-streptavidin nanoparticles. Ocaña C; del Valle M Biosens Bioelectron; 2014 Apr; 54():408-14. PubMed ID: 24296061 [TBL] [Abstract][Full Text] [Related]
14. Electrogenerated chemiluminescence determination of C-reactive protein with carboxyl CdSe/ZnS core/shell quantum dots. Wang S; Harris E; Shi J; Chen A; Parajuli S; Jing X; Miao W Phys Chem Chem Phys; 2010 Sep; 12(34):10073-80. PubMed ID: 20683528 [TBL] [Abstract][Full Text] [Related]
15. Biobar-coded gold nanoparticles and DNAzyme-based dual signal amplification strategy for ultrasensitive detection of protein by electrochemiluminescence. Xia H; Li L; Yin Z; Hou X; Zhu JJ ACS Appl Mater Interfaces; 2015 Jan; 7(1):696-703. PubMed ID: 25475153 [TBL] [Abstract][Full Text] [Related]
16. Aptamer-based highly sensitive electrochemical detection of thrombin via the amplification of graphene. Jiang L; Yuan R; Chai Y; Yuan Y; Bai L; Wang Y Analyst; 2012 May; 137(10):2415-20. PubMed ID: 22489284 [TBL] [Abstract][Full Text] [Related]
17. Turn-on near-infrared electrochemiluminescence sensing of thrombin based on resonance energy transfer between CdTe/CdS coresmall/shellthick quantum dots and gold nanorods. Wang J; Jiang X; Han H Biosens Bioelectron; 2016 Aug; 82():26-31. PubMed ID: 27031188 [TBL] [Abstract][Full Text] [Related]
18. DNA cycle amplification device on magnetic microbeads for determination of thrombin based on graphene oxide enhancing signal-on electrochemiluminescence. Guo Y; Jia X; Zhang S Chem Commun (Camb); 2011 Jan; 47(2):725-7. PubMed ID: 21107492 [TBL] [Abstract][Full Text] [Related]
19. Aptamer-based cocaine assay using a nanohybrid composed of ZnS/Ag Adegoke O; Pereira-Barros MA; Zolotovskaya S; Abdolvand A; Daeid NN Mikrochim Acta; 2020 Jan; 187(2):104. PubMed ID: 31912290 [TBL] [Abstract][Full Text] [Related]
20. Electrogenerated Chemiluminescence Resonance Energy Transfer between Ru(bpy)3(2+) Electrogenerated Chemiluminescence and Gold Nanoparticles/Graphene Oxide Nanocomposites with Graphene Oxide as Coreactant and Its Sensing Application. Dong YP; Zhou Y; Wang J; Zhu JJ Anal Chem; 2016 May; 88(10):5469-75. PubMed ID: 27101322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]