These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 23501944)

  • 61. Field vapor extraction test and long-term monitoring at a PCE contaminated site.
    Chai JC; Miura N
    J Hazard Mater; 2004 Jul; 110(1-3):85-92. PubMed ID: 15177729
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Influence of rate-limited sorption on the cleanup of layered soils by vapor extraction.
    Kaleris V
    J Contam Hydrol; 2002 Mar; 55(1-2):1-27. PubMed ID: 12000088
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analytical solutions for a soil vapor extraction model that incorporates gas phase dispersion and molecular diffusion.
    Huang J; Goltz MN
    J Hydrol (Amst); 2017 Jun; 549():452-460. PubMed ID: 32801391
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Second-order modeling of arsenite transport in soils.
    Zhang H; Magdi Selim H
    J Contam Hydrol; 2011 Nov; 126(3-4):121-9. PubMed ID: 22115079
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Simulation of nonlinear sorption of N-heterocyclic organic contaminates in soil columns.
    Bi E; Zhang L; Schmidt TC; Haderlein SB
    J Contam Hydrol; 2009 Jun; 107(1-2):58-65. PubMed ID: 19419791
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Numerical model of compressible gas flow in soil pollution control.
    Chen JJ; Wang HQ; Zhang Z
    J Environ Sci (China); 2002 Apr; 14(2):239-44. PubMed ID: 12046294
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Axi-symmetric simulation of soil vapor extraction influenced by soil fracturing.
    Schulenber JW; Reeves HW
    J Contam Hydrol; 2002 Aug; 57(3-4):189-222. PubMed ID: 12180809
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Slurry bioreactor modeling using a dissimilatory arsenate-reducing bacterium for remediation of arsenic-contaminated soil.
    Soda S; Kanzaki M; Yamamuara S; Kashiwa M; Fujita M; Ike M
    J Biosci Bioeng; 2009 Feb; 107(2):130-7. PubMed ID: 19217550
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Predicting removal efficiency of organic pollutants by soil vapor extraction based on an optimized machine learning method.
    Zhang S; Zhao J; Zhu L
    Sci Total Environ; 2024 Jun; 927():172438. PubMed ID: 38614354
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Empirical modeling of heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils.
    Yip TC; Tsang DC; Ng KT; Lo IM
    Chemosphere; 2009 Jan; 74(2):301-7. PubMed ID: 18851868
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An improved screening tool for predicting volatilization of pesticides applied to soils.
    Davie-Martin CL; Hageman KJ; Chin YP
    Environ Sci Technol; 2013 Jan; 47(2):868-76. PubMed ID: 23214927
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mathematical modeling of air sparging for subsurface remediation: state of the art.
    McCray JE
    J Hazard Mater; 2000 Feb; 72(2-3):237-63. PubMed ID: 10650192
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Predicting soil concentrations and remediation target values of BTEX by an off-gas based mass transfer model.
    Han Y; Xu J; Zhu L
    Sci Total Environ; 2023 Nov; 900():165731. PubMed ID: 37495150
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rapid and effective decontamination of chlorophenol-contaminated soil by sorption into commercial polymers: concept demonstration and process modeling.
    Tomei MC; Mosca Angelucci D; Ademollo N; Daugulis AJ
    J Environ Manage; 2015 Mar; 150():81-91. PubMed ID: 25438115
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Estimating initial contaminant mass based on fitting mass-depletion functions to contaminant mass discharge data: Testing method efficacy with SVE operations data.
    Mainhagu J; Brusseau ML
    J Contam Hydrol; 2016 Sep; 192():152-157. PubMed ID: 27494132
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems. 2. Field study.
    Poppendieck DG; Loehr RC; Webster MT
    J Hazard Mater; 1999 Oct; 69(1):95-109. PubMed ID: 10502609
    [TBL] [Abstract][Full Text] [Related]  

  • 77. ANALYSIS OF SOIL VAPOR EXTRACTION DATA TO EVALUATE MASS-TRANSFER CONSTRAINTS AND ESTIMATE SOURCE-ZONE MASS FLUX.
    Brusseau ML; Rohay V; Truex MJ
    Ground Water Monit Remediat; 2010; 30(3):57-64. PubMed ID: 23516336
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A numerical model for estimating the removal of volatile organic compounds in laboratory-scale treatability tests for thermal treatment of NAPL-impacted soils.
    Xie Q; Mumford KG; Kueper BH; Zhao C
    J Contam Hydrol; 2019 Oct; 226():103526. PubMed ID: 31437717
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cost Comparison of Soil Vapor Extraction and Subslab Depressurization for Vapor Intrusion Mitigation.
    Lutes C; Stewart L; Truesdale R; De Loera J; Zimmerman JH; Schumacher B
    Ground Water Monit Remediat; 2022 Mar; 42(4):43-53. PubMed ID: 36960358
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Box Experiment Study of Thermally Enhanced SVE for Benzene.
    Zhang Q; Feng Q; Zhu X; Zhang M; Wang Y; Yang L
    Int J Environ Res Public Health; 2021 Apr; 18(8):. PubMed ID: 33921471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.