These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 23502529)

  • 1. Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation.
    Guan G; Wu L; Bhagat AA; Li Z; Chen PC; Chao S; Ong CJ; Han J
    Sci Rep; 2013; 3():1475. PubMed ID: 23502529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Particle Concentration Using Complex Cross-Section Microchannels.
    Mihandoust A; Razavi Bazaz S; Maleki-Jirsaraei N; Alizadeh M; A Taylor R; Ebrahimi Warkiani M
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32331275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle Focusing in a Straight Microchannel with Non-Rectangular Cross-Section.
    Kim U; Kwon JY; Kim T; Cho Y
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells.
    Warkiani ME; Guan G; Luan KB; Lee WC; Bhagat AA; Chaudhuri PK; Tan DS; Lim WT; Lee SC; Chen PC; Lim CT; Han J
    Lab Chip; 2014 Jan; 14(1):128-37. PubMed ID: 23949794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section.
    Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures.
    Fan LL; He XK; Han Y; Du L; Zhao L; Zhe J
    Biomicrofluidics; 2014 Mar; 8(2):024108. PubMed ID: 24738015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput viscoelastic particle focusing and separation in spiral microchannels.
    Kumar T; Ramachandraiah H; Iyengar SN; Banerjee I; MÃ¥rtensson G; Russom A
    Sci Rep; 2021 Apr; 11(1):8467. PubMed ID: 33875755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the physics of inertial microfluidics in curved microchannels. II. Adding an additive rule to understand complex cross-sections.
    Rafeie M; Hosseinzadeh S; Huang J; Mihandoust A; Warkiani ME; Taylor RA
    Biomicrofluidics; 2019 May; 13(3):034118. PubMed ID: 31431814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dean vortex-enhanced blood plasma separation in self-driven spiral microchannel flow with cross-flow microfilters.
    Wang Y; Talukder N; Nunna BB; Lee ES
    Biomicrofluidics; 2024 Jan; 18(1):014104. PubMed ID: 38343650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaled-Up Inertial Microfluidics: Retention System for Microcarrier-Based Suspension Cultures.
    Moloudi R; Oh S; Yang C; Teo KL; Lam AT; Ebrahimi Warkiani M; Win Naing M
    Biotechnol J; 2019 May; 14(5):e1800674. PubMed ID: 30791214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle slip velocity influences inertial focusing of particles in curved microchannels.
    Deshpande S; Tallapragada P
    Sci Rep; 2018 Aug; 8(1):11852. PubMed ID: 30087382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of Inertial Microfluidic Devices.
    Razavi Bazaz S; Rouhi O; Raoufi MA; Ejeian F; Asadnia M; Jin D; Ebrahimi Warkiani M
    Sci Rep; 2020 Apr; 10(1):5929. PubMed ID: 32246111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of focused streams for viscoelastic flow in spiral microchannels.
    Gao H; Zhou J; Naderi MM; Peng Z; Papautsky I
    Microsyst Nanoeng; 2023; 9():73. PubMed ID: 37288322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined electrokinetic and shear flows control colloidal particle distribution across microchannel cross-sections.
    Lochab V; Prakash S
    Soft Matter; 2021 Jan; 17(3):611-620. PubMed ID: 33201951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiral Microchannels with Trapezoidal Cross Section Fabricated by Femtosecond Laser Ablation in Glass for the Inertial Separation of Microparticles.
    Al-Halhouli A; Al-Faqheri W; Alhamarneh B; Hecht L; Dietzel A
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic Particle Focusing and Separation in a Spiral Channel.
    Feng H; Jafek AR; Wang B; Brady H; Magda JJ; Gale BK
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.