These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23502972)

  • 1. Red cell volume expansion at altitude: a meta-analysis and Monte Carlo simulation.
    Rasmussen P; Siebenmann C; Díaz V; Lundby C
    Med Sci Sports Exerc; 2013 Sep; 45(9):1767-72. PubMed ID: 23502972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of intermittent exposure to high altitude on blood volume and erythropoietic activity.
    Schmidt W
    High Alt Med Biol; 2002; 3(2):167-76. PubMed ID: 12162861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altitude acclimatization and blood volume: effects of exogenous erythrocyte volume expansion.
    Sawka MN; Young AJ; Rock PB; Lyons TP; Boushel R; Freund BJ; Muza SR; Cymerman A; Dennis RC; Pandolf KB; Valeri CR
    J Appl Physiol (1985); 1996 Aug; 81(2):636-42. PubMed ID: 8872628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term exposure to intermittent hypoxia results in increased hemoglobin mass, reduced plasma volume, and elevated erythropoietin plasma levels in man.
    Heinicke K; Prommer N; Cajigal J; Viola T; Behn C; Schmidt W
    Eur J Appl Physiol; 2003 Feb; 88(6):535-43. PubMed ID: 12560952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hematological parameters in high altitude residents living at 4,355, 4,660, and 5,500 meters above sea level.
    León-Velarde F; Gamboa A; Chuquiza JA; Esteba WA; Rivera-Chira M; Monge CC
    High Alt Med Biol; 2000; 1(2):97-104. PubMed ID: 11256567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent.
    Song A; Zhang Y; Han L; Yegutkin GG; Liu H; Sun K; D'Alessandro A; Li J; Karmouty-Quintana H; Iriyama T; Weng T; Zhao S; Wang W; Wu H; Nemkov T; Subudhi AW; Jameson-Van Houten S; Julian CG; Lovering AT; Hansen KC; Zhang H; Bogdanov M; Dowhan W; Jin J; Kellems RE; Eltzschig HK; Blackburn M; Roach RC; Xia Y
    Nat Commun; 2017 Feb; 8():14108. PubMed ID: 28169986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in plasma and red cell volumes during exposure to high altitude.
    Stokke KT; Rootwelt K; Wergeland R; Vale JR
    Scand J Clin Lab Invest Suppl; 1986; 184():113-7. PubMed ID: 3473608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining the "dose" of altitude training: how high to live for optimal sea level performance enhancement.
    Chapman RF; Karlsen T; Resaland GK; Ge RL; Harber MP; Witkowski S; Stray-Gundersen J; Levine BD
    J Appl Physiol (1985); 2014 Mar; 116(6):595-603. PubMed ID: 24157530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Health risk for athletes at moderate altitude and normobaric hypoxia.
    Schommer K; Menold E; Subudhi AW; Bärtsch P
    Br J Sports Med; 2012 Sep; 46(11):828-32. PubMed ID: 22842235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell volume and the capacity for exercise at moderate to high altitude.
    Jacobs RA; Lundby C; Robach P; Gassmann M
    Sports Med; 2012 Aug; 42(8):643-63. PubMed ID: 22741918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of blood volume in lowlanders exposed to high altitude.
    Siebenmann C; Robach P; Lundby C
    J Appl Physiol (1985); 2017 Oct; 123(4):957-966. PubMed ID: 28572493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure.
    Gore CJ; Clark SA; Saunders PU
    Med Sci Sports Exerc; 2007 Sep; 39(9):1600-9. PubMed ID: 17805094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-altitude training. Aspects of haematological adaptation.
    Berglund B
    Sports Med; 1992 Nov; 14(5):289-303. PubMed ID: 1439397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Military applications of hypoxic training for high-altitude operations.
    Muza SR
    Med Sci Sports Exerc; 2007 Sep; 39(9):1625-31. PubMed ID: 17805096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes.
    Heinicke K; Heinicke I; Schmidt W; Wolfarth B
    Int J Sports Med; 2005 Jun; 26(5):350-5. PubMed ID: 15895317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hematocrit and Hemoglobin Levels of Nonhuman Apes at Moderate Altitudes: A Comparison with Humans.
    Mortola JP; Wilfong D
    High Alt Med Biol; 2016 Dec; 17(4):323-335. PubMed ID: 27959666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systematic Review and Meta-Analysis Reveals Altered Drug Pharmacokinetics in Humans During Acute Exposure to Terrestrial High Altitude-Clinical Justification for Dose Adjustment?
    Bailey DM; Stacey BS; Gumbleton M
    High Alt Med Biol; 2018 Jun; 19(2):141-148. PubMed ID: 29620950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-Adaptation: Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia.
    Gibson OR; Taylor L; Watt PW; Maxwell NS
    Sports Med; 2017 Sep; 47(9):1751-1768. PubMed ID: 28389828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of hematocrit, heart mass, and high-altitude exposure in acute hypoxia tolerance.
    Burton RR; Smith AH; Carlisle JC; Sluka SJ
    J Appl Physiol; 1969 Jul; 27(1):49-52. PubMed ID: 5786968
    [No Abstract]   [Full Text] [Related]  

  • 20. Altitude preexposure recommendations for inducing acclimatization.
    Muza SR; Beidleman BA; Fulco CS
    High Alt Med Biol; 2010; 11(2):87-92. PubMed ID: 20586592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.